Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные соединения фтора элементарного фтора

    Разряд ионов фтора требует значительно более отрицательного потенциала, чем разряд гидроксильных ионов, поэтому водные растворы непригодны для процессов электрохимического фторирования. Химическая активность элементарного фтора делает крайне затруднительным выбор растворителя. По-видимому, единственным растворителем, дающим удовлетворительные результаты, является жидкий безводный фтористый водород [14]. Чистый фтористый водород обладает незначительной электропроводностью [12], но в нем хорошо растворяется большинство органических соединений (спирты, простые эфиры, карбоновые кислоты, нитрилы, кетоны, амины и др.), образуя электропроводящие растворы, что свидетельствует о процессе диссоциации, происходящем при растворении. По характеру диссоциации растворы во фтористом водороде коренным образом отличаются от водных растворов тем, что электролитической диссоциации подвергается не растворенное вещество, а комплекс его с растворителем, т. е. фтористым водородом [15, 16]. Процессы диссоциации, происходящие при растворении во фтористом водороде спирта и эфира, можно представить следующими уравнениями  [c.433]


    При сравнении галогенов между собой в общем наблюдается очень правильная закономерность в их поведении. Так, отрицательное электросродство, т. е. стремление заряжаться отрицательно, как уже было сказано, непрерывно уменьшается от фтора к иоду. Как следствие из этого элементарный фтор вытесняет все другие галогены из их соединений с металлами хлор, напротив, разлагает только соединения с металлами брома и иода, а бром — только соединения иода. Лежащий в основе этой реакции процесс всегда заключается в переносе заряда от ионной формы вещества с меньшей электроотрицательностью к форме вещества с большей электроотрицательностью. [c.742]

    Эффект понижения электроотрицательности в ряду — фтор, хлор, бром, иод явно проявляется в способности более легкого галогена в элементарном состоянии окислять галогенид-ионы более тяжелых галогенов или в способности более тяжелых галогенов в элементарном состоянии восстанавливать кислородные соединения более легких галогенов  [c.221]

    Соединения фтора характеризуются особенно высокими значениями теплот образования (на грамм-эквивалент см., нанример, табл. 27 и 48). Наряду с высоким значением сродства к электрону определяющими здесь факторами являются небольшие размеры атомных и ионных радиусов. Этим фтор отличается от брома и иода, значения сродства к электрону которых не меньше, чем у фтора, но которые обладают существенно большими атомными и ионными радиусами. Особая агрессивность элементарного фтора объясняется как высоким значением теплот образования его соединений, так и повышением скорости реакции расщепления молекул F2 на атомы, которое становится заметным уже при умеренно высокой температуре [ср. Wi ke E., Angew. hem., 66, 701, 1954]. [c.748]

    Трудно охарактеризовать в общих чертах относительную способность фторидов галогенов к окислительному фторированию по сравнению с фтором. Ясно, что пентафторид иода не удобен для препаративных работ, так как это соединение очень реакционноспособно и его трудно получать. Отдать предпочтение какому-либо из фторидов галогенов по сравнению с элементарным фтором можно, только учитывая его доступность или же особые физические свойства, необходимые в данном конкретном случае (табл. 1). Следует отметить, что ВгРз и IF5 являются ассоциированными жидкостями и хорошими растворителями, особенно для ионных фторидов. В некоторых случаях этим может быть вызвано использование [c.332]


    Руфф [18] открыл целый ряд фторидов металлов, в которых ион металла обладал необычно высокой валентностью. Эти соединения могли быть получены только путем действия элементарного фтора. Руфф показал, что эти соединения, в частности МпРз, AgFa и СоРз, представляют собой сильные окислители. Онн были получены в лаборатории университета Джонса Гопкинса до октября 1941 г. и использовались в качестве фторирующих агентов для превращения UF4 в UPe-Казалось вероятным, что эти соединения могут реагировать с углеводородами, замещая водород на фтор, как и элементарный фтор, причем течение реакции предполагалось менее энергичным. Замещение водорода в углеводородах иа фтор происходило бы при этом по существу благодаря действию элементарного фтора, но [c.91]

    В настоящей статье приведены главным образом токсические свойства некоторых классов органических соединений, содержащих фтор. В литературе в большинстве случаев применяется неопределенный общий термин отравление фтором , скрывающий различные условия, которые совершенно не связаны фармакологически. Исходя из этого, а также для того чтобы представить общую картину фармакологических закономерностей, вначале будет кратко описано отравление элементарным фтором и фтористым водородом, а зате.м — действие фторид-иона (Р ). Большие Дозы фторид-иона являются причиной истинного фторидного отравления, чаще известного как фтороз. если отравление принимает хронический характер. [c.523]

    Реакции с соединениями фтора отличаются от реакций с соединениями других галогенов. Окисление фтор-иона термодинамически неблагоприятно элементарный фтор вызывает разложение перекиси водорода и образование ряда продуктов, пока еще полностью не идентифицированных. Уже в одной нз старых работ [169] отмечено влияние перекиси водорода на различные сме-ншнные фториды. Маас и Хэтчер [170] показали, что растворимость элементарных хлора и йода в безводной перекиси водорода не очень велика, и нашли, что бромид и йодид в отношении перекиси водорода обладают значительно большей реакционной способностью, чем хлорид. Изучено также влияние смесей из хлорида и бромида [171]. [c.333]

    В молекулах всех химических соединений алгебраическая сумма положительных и отрицательных валентностей равна нулю. Это позволяет определять валентность элементарных ионов в сложных веществах. Например, необходимо определить валентность фосфора в ортофосфорной кислоте Н3РО4. При этом рассуждают так. Валентность водорода во всех соединениях (кроме гидридов) равна -fl. Кпслород в соединениях (кроме окиси фтора) проявляет валентность —2. [c.57]

    Однако, кроме указанных ионов, в электролите находятся и ряд других катионов и анионов далее, в электролитических ваннах используются не нормальные водородные электроды, а электроды, выполненные из различных материалов и сплавов (графит, сталь, медь, никель и др.)- По этим причинам для выделения фтора необходимо создание высокого перенапряжения. Практически электролиз проводят при разности потенциалов 4—8 в. При таких разностях потенциалов выделяющиеся на лнодной поверхности радикалы фтора полностью используются в анодном пространстве электролитической ванны. Если разность потенциалов увеличить до 10 в и более, то выделяется элементарный фтор, что приводит к энергичной коррозии материала анода и к. сильному разложению фторируемого органического соединения кроме того, в отходящих газах будет содержаться некоторое количество элементарного фтора, что может привести, к взрыву. [c.349]

    Класс летучих неорганических фторидов включает большое число разнообразных соединений, для многих из которых нот прямых аналогов среди соединений других галоидов. Исключительная устойчивость иона фтора но отношению к окислителям позволяет ему образовывать прочные химические связи с атомами, находяш имися в высшей степени окисления, в которой они обладают значительным сродством к электрону. В то же время малый размер атома фтора обусловливает возможность образования большого числа высоковалентных полифторидов. Большинство таких фторидов, характери-зуюш ихся необычайной летучестью, может быть получено путем использования элементарного фтора или с помощью таких фторирующих агентов, как IF3 или 0F3. Однако некоторые высоковалентные фториды впервые были получены с помощью реакций диспропорционирования, сопровождающих обмен атома хлора полихлорида металла на атом фтора фтористого водорода. Так, нанример, UFg был впервые случайно получен из U lgH HF Руффом, пытавшимся найти наиболее простой способ получения соединения, которое могло бы при нагревании выделять фтор. [c.69]

    В окислительной атмосфере вплоть до 1460 5°С 12A7 плавится конгруэнтно. В восстановительной атмосфере его температура плавления 1480 5°С. Решетка 12A7 способна включать ионы фтора, хлора с образованием соединения i2A7 aX2, где X—ОН, F, С1, при этом параметры элементарной ячейки увеличиваются в следующем порядке фторид — гидрат — хлорид. [c.144]

    При проведении таких реакций следует, однако, учитывать восстановительные свойства водородных соединений. Покажем это на примере галогеноводородов. В 2 главы 7 мы отмечали, что чем сильнее окислительные свойства свободного галогена, тем слабее восстановительные свойства образуемого им элементарного иона. Сказанное относится и к галогеноводоро-дам. Так, -если свободный фтор является самым сильным окислителем пз галогенов, то фтороводород — самый слабый восстановитель из галогеноводородов. [c.182]


    Широко пользуются методами пирогидролиза при микро-элементарном анализе органических соединений. В качестве катализаторов в этом случае применяют ванадат серебра на пемзе [16-22], МдО [6, 8, 17, 23—27], смесь MgO и N10 [28]. Адсорбен-. тами для НР при микроэлементарном анализе могут служить МаР, нагретый до 270° С [29], КР [30] или МдО. При использовании MgO содержание фтор-иона можно высчитать по привесу трубки с адсорбентом или путем пиролитического разложения при 1000—1100° С, полученного М Рг. [c.44]

    При особом рассмотрении водорода нельзя не обратить внимания на его исключительное сходство с галогенами. Несмотря на некоторые различия, он обладает рядом характерных, общих с галогенами свойств. Так же как и галогены, он является неметаллом и, так же как и последние, в элементарном состоянии образует двухатомные молекулы. В этих молекулах, как в случае галогенов, так и в случае водорода, атомы связаны простой связью. Работа, необходимая для разложения молекул на атомы, постепенно убывает в ряду Н—С1—Вг—Р—I. Так же как галогены, водород может выступать в качестве электроотрицательного иона, т. е. водород аналогично галогенам обладает сродством к электрону. Последнее означает, что в случае присоединения одного электрона к нейтральному атому Н, выделяется энергия. Так же как водород, галогены в соединениях, где они отрицательно заряжены, исключительно одновалентны. Соединения водорода с металлами, в которых водород является электроотрицательной составной частью по строению и характеру связи, соответствуют аналогичным соединениям галогенов. По своему строению эти вещества подобны солям, и поэтому водород в полном смысле слова можно считать солеобразователем . Точно также и работа, которая должна быть затрачена, чтобы получить положительно заряженный водород, т. е. атом водорода с отщепленным электроном, является отнюдь не меньшей, чем у галогенов (за исключением фтора). В этом можно убедиться, сравнив ионизационные потенциалы (см. стр. 140). [c.42]

    Двойные или комплексные фториды циркония и щелочных металлов можно получить, смешивая растворы компонентов (в стехиометрических соотношениях) в плавиковой кислоте, а также сухим методом. Особый интерес вызвало недавнее повторное исследование структуры соединения KsZrP . Ранее сообщалось, что оно содержит ион ZrP , обладающий октаэдрической структурой, нарушенной внедрением лишнего атома фтора в центр одной из граней . В действительности фторид-ионы располагаются вокруг атома циркония в вершинах пентагональной бипирамиды соединение изоморфно K3UP7, и комплексный ион имеет структуру семифтористого иода (кубическая симметрия элементарной ячейки обусловлена термическими нарушениями). [c.97]

    Трехфтористый ниобий — инертное темно-синее вещество, возгоняющееся без изменения в вакууме при 570°С может быт , по.чучен действием смеси водорода и фтористого водорода на гидр 1д ниобия при 570 °С. Он имеет кубическую структуру НеОз ноны фтора образуют плотную упаковку, причем ионы ниобия заполняют 7з наличных октаэдрических пустот . Магнитный момент его равен 0,7 магнетона Бора °, т. е. несколько меньще, чем у соответствующего фторида тантала (1,4 магнетона Бора) ° . Последнее соединение, приготовленное пропусканием фтористого водорода над металлом или гидридом при 250—300°С, очень напоминает ниобиевый аналог (также не реакционноспособен), но обладает серой окраской . Как и следует ожидать, оба соединения в результате лантанидного сжатия обладают почти точно одинаковыми размерами длина реб ра кубической элементарной ячейки для ЫЬРз составляет [c.100]

    В этой главе прежде всего будут описаны качественные способы определения фтора, затем методы количественного определения иона фтора, определение органически связанного фтора, далее элементарный анализ фторированиых соединений [c.277]


Смотреть страницы где упоминается термин Ионные соединения фтора элементарного фтора: [c.836]    [c.472]    [c.30]    [c.56]    [c.67]    [c.357]    [c.133]    [c.243]    [c.662]    [c.437]    [c.438]    [c.101]    [c.102]    [c.192]    [c.101]    [c.28]    [c.392]   
Фтор и его соединения Том 1 (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Соединение ионов

Соединения ионные

Фтор и соединения фтора



© 2025 chem21.info Реклама на сайте