Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий определение в железных рудах

    При определении алюминия в железных рудах, глинистых карбонатных шпатах и топливе к анализируемому раствору добавляют избыток комплексона III [c.183]

    Хорошим методом определения алюминия в железных рудах является фотометрический метод с хромазуролом S [596]. [c.196]

    Описан ряд методов фотометрического определения алюминия в железных рудах с эриохромцианином R [463, 808, 855]. Определение проводят при pH 6, многие мешающие элементы маскируют с помощью тиогликолевой кислоты [808,855]. На ванадий вводят поправку, для чего готовят раствор как для определения алюминия, но добавляют 2 мл 2,4%-ного раствора NaF, доводят до метки и измеряют оптическую плотность по сравнению с холостой пробой. Значение этой оптической плотности вычитают из оптической плотности анализируемого раствора. [c.196]


    Для определения алюминия в железных и марганцевых рудах предложен весовой фосфатный метод [1102]. Ввиду невысокого содержания алюминия большее применение нашли, однако, фотометрические методы с оксихинолином [144, 864], с эриохромцианином R [463, 808, 855], с хромазуролом S [596]. [c.195]

    Иодидный метод применяется для определения ЗЬ в различных материалах, в том числе в алюминии и его сплавах и солях [843, 1294], бронзах [139, 340], ванадате натрия [1294], галлии и его окислах [1294], германии [500], железе [1294], чугуне [22, 951, 1185, 1477], нелегированных [1431] и легированных сталях [918], ферросплавах [690], железных рудах [735, 1277], золоте [735, 1682] и его сплавах [1043], кобальте, магнии и марганце и их хлоридах [c.42]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Усатенко Ю. И., Г у р е е в а Л. И.. Разделение алюминия и циркония методом ионного обмена. Зав. лаб.. 22, 781 (1956). с а т е и к о Ю. И., Даценко О. В., Определение кальция и магния п железной руде с применением катионита. Зав. лаб., 14, 1323 (1948). с а т е н к о Ю. И., К л и м к о в и ч Е. А., Определение свободной кислоты в растворах гидролизующихся солей с применением катионитов, Зав. лаб., 19, 418 (1953).  [c.336]

    Недавно опубликованы работы японских химиков, посвященные определению Ре2+-ионов и общего содержания железа в железных рудах путем разложения их конденсированной фосфорной кислотой [534], а также определению алюминия, железа, титана в бокситах, осуществляемым принципиально тем же путем [535]. Содержание железа (II) определяли титрованием в присутствии конденсированной фосфорной кислоты бихроматом калия или фотометрическим методом с 1,10-фенантролином после экстракции метилизобутилкетоном титан — с помощью М-бензоил-К-фенил-гидроксиламина алюминий —в виде оксината и т, д. [c.130]

    Никкель и кобальт осаждают одновременно сернистым аммонием из не содержащих железа и алюминия фильтратов, полученных после осаждения цинком [см. далее, 14]. Если присутствует марганец, он тоже осаждается. При обработке осадка сильно разбавленной соляной кислотой (1 6) сернистый марганец растворяется, а сернистый кобальт и никкель остаются в осадке. Их фильтруют, промывают, прокаливают и взвешивают в виде закиси или осаждают электролизом и взвешивают в виде металлов. Во всяком случае прокаленный осадок следует проверить на железо и марганец. Отделение никкеля от кобальта требуется очень редко, тем более, что кобальт не часто встречается в железных рудах в количествах, поддающихся определению. Если разделение необходимо, его производят [c.41]

    Применение. Применение комплексонометрического титрования кальция очень велико определение жесткости природных вод, анализ сельскохозяйственных продуктов, окиси алюминия, животных тканей, фруктов, сахаров, биологических жидкостей, морской воды, цементов, известняков и доломитов, плавикового шпата, пищевых продуктов, стекол, железных руд, фармацевтических препаратов, молока, минеральных вод, никелевых сплавов, бумажной массы, растений, горных пород, почв и т. п. [c.816]

    В литературе описаны методики определения цинка в силикатных породах [1], воде и воздухе [2], графите, молибдене, ниобии, тантале и вольфраме [3], цинковых бронзах [4], железных рудах (5], в сплавах на основе магния и алюминия [6]. Авторы указанных работ применяли в качестве источника света лампу с полым катодом. [c.97]

    Ионообменное отделение железа, особенно при анализе железных руд, упрощает определение алюминия и др. элементов. Четкое отделение Ре, Сд, 2п от А1, Са, М , РЬ, Сг, N1, Со, Т1, Си достигается при пропускании 7 н. солянокислых растворов через анионит АВ-17 (Бюлл. научно-технической информации Методы лабораторных исследований , № 3, стр. 3, издание Министерства геологии. М., 1967).— Прим. ред. [c.100]

    Разработаны методы определения магния в золах растений [15, 214], в почвах [16], в биологических жидкостях [18, 19, 20, 152, 244] шлаках и цементах [82], в сплавах на основе алюминия [6, 36, 127, 198], в железе [149], в металлическом уране [245], в никеле и сплавах на его основе [156], в рудах [175], в железных рудах, жаропрочных соединениях, цементах, чугуне, сахарах [175], в препаратах редкоземельных элементов [ 200] в чугуне [247] методы определения кальция в растительных материалах [86], в почвах [16], в биологических жидкостях [20, 79, 157, 175, 215], в рудах, сахарах [175] методы определения стронция [11, 175, 184, 242]. [c.124]

    Ю. и. Усатенко и О. В. Даценко применили катионит вофатит Р для определения магния и кальция в железных рудах. Принцип метода состоит в том, что кальций и магний сорбируются катионитом, а железо и алюминий проходят в фильтрат. [c.214]

    При определении окиси алюминия в железной руде, если алюминий осаждают в виде AIPO4, вместе с алюминием осаждаются также фосфаты титана (TI2P2O9) и циркония (ггРгОу). [c.40]

    Каснер и Озир [864] предложили следующий метод для определения алюминия в железных рудах. [c.195]

    Итикуни [144] описал простой фотометрический оксихинолиновый метод определения алюминия в железных рудах. [c.196]

    Сосновский Б. А. Определение окиси алюминия в железных рудах оксихинолином. Зав. лаб., 1951, 17, № 7, с. 801—802. 6605 Сочеванов В. Г. Исследование возможности одновременного определения никеля и кобальта методом электрометрического титрования, [С прим, ред,]. Зав. лаб,, 1948, [c.215]

    При определении окиси алюминия в железной руде, если алюминий осаждают в виде AIPO вместе с алюминием осаждаются также фосфаты титана (Т12Р20э) и циркония (Zr-PjO,). Вычислить процентное содержание AljOg в руде, если из навески руды в 0,2430 г получили осадок фосфатов алюминия, титана и циркония, всего — 0,2512 г, и при дальнейшем анализе руды в ней было найдено 2,40% Ti и 0,050% Zr. [c.36]


    Применяя катионит деацидит ФФ, Хуан Хуэй-мин установил возможность отделения железа и определения алюминия в железной руде с помощью эряохромционина Р. [c.172]

    Хуан X у э й-М и н. Определение алюминия в железной руде после отделения железа при помощи катионитов, Хуасюэ Шицзе ниа хие, ши иие, 1958, J3, № 4, стр, 168, [c.218]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Определение алюминия производят путем осаждения его в виде фосфорнокислой соли в уксуснокислом растворе. Способ этот, предлрженный Fr. W O h 1 е г о м и ha псе Гем для определения глинозема в железных рудах (стр. 29), в случае магниевых сплавов выполняется следующим обргзом. [c.223]

    При пасгюртном анализе железных руд и агломератов определяют содержание товарной влаги, общее содержание железа, закиси железа, двуокиси кремния или нерастворимого остатка, окиси кальция, фосфора, серы. В отдельных случаях определяют содержание окиси магния, окиси алюминия, меди и др. При полных анализах кроме указанных компонентов, определяют металлическое железо, марганец, титан, ванадий, хром, щелочные металлы, свободную кремневую кислоту реже в железных рудах определяют мышьяк, сульфидную серу и углерод. Для специальных анализов иногда требуется определение бора, цинка, свинца, германия и др. [c.79]

    Спекшуюся массу растворяют при нагревании в 20 мл серной кислоты (2), разбавляют водой до 50—70 мл, добавляют 0,5—1 г персульфата аммония (3), 2—3 мл азотнокислого серебра (5) и нагревают до кипения. К раствору добавляют избыток аммиака (4) до ясного запаха и дают раствору с осадком отстояться в течение 5—10 мин. Осадок отфильтровывают, промывают 3—4 раза горячей водой и растворяют в соляной кислоте. Раствор упаривают и отделяют кремневую кислоту. От фильтрата после отделения кремневой кислоты отбирают аликвотную часть, соответствующую навеске 1—2 мг алюминия, и далее поступают, как при определении окиси алюминия алюминоновым методом. В отличие от определения ее в железной руде колориметрирова-ние проводят через 30—60 мин. [c.291]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Так как в железных рудах очень часто присутствуют титан, фосфор, а иногда и ванадий, которые при электролизе с ртутным катодом не удаляются из раствора, а при осаждении алюминия аммиаком выпадают вместе с ним в осадок, в полученный результат определения (А120д) необходимо внести соответствующие поправки. [c.60]

    В полных анализах железных руд результат определения ванадия, выраженный в виде УгОа, вычитают из суммы В20д, так как ванадий осаждается аммиаком совместно с железом, алюминием, титаном и т. д. [c.80]

    Предлагаемый ниже метод определения алюминия относится к методам технического анализа и отличается быстротой выполнения. Железную руду сплавляют с перекисью натрия, плав выщелачивают водой, водную вытяжку нейтрализуют до слабокислой реакции соляно кислотой И осаждают алюминий 8-оксихинолпном в присутствии ацетата аммония. [c.81]

    Сонгина и Ходасевич [4] исследовали вопрос о роли смеси Циммермана — Рейнгардта при потенциометрическом определении железа. Попов [5] с целью замены ртути предложил восстанавливать основную массу ионов Ре + хлористым оловом, а оставшуюся часть — хлористым хромом, избыток которого окисляется кислородом воздуха. Метод не нашел широкого применения. Файн-берг и Заглодина [6] описали вариант бихроматного метода, по которому ионы Ре + восстанавливают хлористым оловом, избыток которого окисляют раствором двухромовокислого калия в присутствии силикомолиб-деновой кислоты до перехода синей окраски раствора в зеленую. После этого титруют ионы Ре + двухромовокислым калием в присутствии индикатора фенилантра-ниловой кислоты до перехода зеленой окраски в малиновую. Метод не применяется из-за неясной точки перехода при титровании избытка хлористого олова. Нами был использован бихроматный метод с применением в качестве восстановителя хлористого олова или металлического алюминия. При применении хлористого олова избыток его окисляли хлорной ртутью. В качестве индикатора в обоих случаях применяли дифениламино-сульфонат натрия. В книге Сырокомского [7] подробно описаны бихроматный и перманганатометрический методы определения содержания Реобщ в железных рудах и титаномагнетитах. [c.12]

    Черный и Подойникова [72] предложили оригинальный метод определения Ре ет в железных рудах. 0,3—0,5 г руды смешивают с 2—3 г окиси алюминия и 0,2—0,3 г элементарной серы и прокаливают в лодочке в трубчатой печи при 800° С в токе сухого углекислого газа, затем в токе хлористого водорода. Выделяющийся сероводород поглощают раствором смеси уксуснокислого кадмия и цинка и определяют йодометрически. В результат анализа вводят поправку на содержание в анализируемом материале сульфидной серы. Результаты определения Рвмет, по данным авторов, совпадают с результатами его определения хлорнортутным методом. Метод сложен. [c.75]

    Следы галлия встречаются во многих алюминиевых минералах, в частности в боксите и некоторых аоланах, в золе некоторых углей, во многих цинковых обманках и железных рудах (.магнетит, глинистый железняк, углистый железняк). При обработке боксита галлий концентрируется в щелочных растворах, из которых осаждают алюминии по методу Байера. После того как содержание галлия достигнет определенной концентрации, он осаждается вместе с алюминием. В производстве электролитического цинка при выщелачивании кислотой обожженной цинковой обманки галлий концентрируется в осадке гидроокиси железа, который образуется при очистке выщелоченного раствора. Этот осадок является важнейшим источником галлия в Соединенных Штатах. Кокс, получаемый из многих углей Англии, содержит в золе небольшие количества галлия если кокс используется для производства генераторного газа, низший окисел галлия улетучивается с газом и при его сгорании переходит в окись галлия. Последняя отлагается и дымоходах в виде пыли, которая может содержать 1 % и более ОнгОз. В Англии дымовая пыль является наиболее важным источником получения галлия. [c.95]

    Ляо Чжэнь Цзянь установил возможность фотометрического определения алюминия с помощью эриохром-цианина R после ионообменного отделения алюминия от мешающих компонентов с использованием цеолита ФФ в С1-форме. Разработана методика определения алюминия в легированных сталях, в сплавах на медной основе и в железных рудах. [c.177]

    Бокситы, нефелиновые концентраты, нефелнно-апатитовые руды, криолит и фторид алюминия разлагают сплавлением с едким натром в серебряных, никелевых или железных тиглях. В указанных материалах алюминий определяют главным образом комплексометрическим методом. Для определения в нефелино-апатитовых рудах и нефелиновых концентратах Артемьева [16] предлагает следующую методику. [c.194]


Смотреть страницы где упоминается термин Алюминий определение в железных рудах: [c.93]    [c.20]    [c.20]    [c.21]    [c.79]   
Колориметрические методы определения следов металлов (1964) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в железных рудах

Железные руды

Определение алюминия в рудах



© 2025 chem21.info Реклама на сайте