Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сплавы алюминия никеля тантал титан

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]

    Металлы и окислы металлов. Алюминий, бериллий, железо, свинец, никель, хром, марганец, молибден, серебро, кремний, тантал, титан, цинк, вольфрам, нержавеющие стали, ферромагнитные сплавы и ферриты. [c.10]

    Цветные металлы и их сплавы. Цветные металлы и их сплавы применяют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных материалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы. [c.258]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]


    Добавки металлов к титану по-разному влияют на температуру превращения а->р. К металлам, стабилизирующим а-фазу, относится алюминий. р-Фазу стабилизируют ванадий, ниобий, тантал, молибден. Марганец, железо, никель, медь понижают температуру перехода а-фазы в Р-фазу, но сплавы титана с этими металлами, достигнув определенной, так называемой эвтектоидной температуры, при дальнейшем охлаждении претерпевают превращения, при которых Р-фаза полностью распадается, образуя а-фазу и промежуточную -фазу, обога- [c.86]

    К элементам, резко понижающим стойкость сплавов против коррозионного растрескивания, относятся алюминий, олово, медь, ванадий, хром, марганец, железо и никель к элементам, слабо влияющим на понижение коррозионной стойкости, — цирконий, тантал и молибден. Сплавы со структурой а-титана более чувствительны к коррозионному растрескиванию, чем сплавы с -титаном. Термическая обработка приводит к некоторому повышению чувствительности а-сплавов к корро- [c.78]

    Цветные металлы и их сплавы. В химической промышленности помимо стали и чугуна применяют алюминий, медь, титан, тантал, никель, свинец, а также сплавы на их основе — латуни, бронзы. Химическая стойкость цветных металлов к воздействию агрессивных сред зависит от их чистоты. Примеси других металлов значительно снижают химическую сопротивляемость цветных металлов, но повышают их механическую прочность. [c.22]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Из цветных металлов применяют алюминий, медь, никель, титан, цинк, олово, свинец, серебро, тантал, их сплавы применяют также металлические защитные покрытия, наносимые различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), плакированием (двухслойные металлы), погружением (горячие покрытия) и др. Их применение ограничено, так как они имеют большой недостаток — пористость. [c.362]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Цветные металлы алюминий, медь, никель, титан, цинк, олово, свинец, серебро, тантал, их сплавы и другие более редкие металлы. [c.88]

    Применение цветных металлов и их сплавов для изготовления аппаратов допускается в тех случаях, когда температура стенки не превышает для меди, латуни, бронзы 250° С, для свинца 140° С, для олова 100° С, для алюминия 150° С, для никеля 500° С. Титан может работать при температурах до 600° С, а тантал — 1200° С. Некоторые данные о допускаемых напряжениях для цветных металлов в зависимости от температуры приведены в таблицах. [c.166]

    Для плакирования применяют металлы и сплавы, обладающие хорошей свариваемостью углеродистые, кислотостойкие стали, дюралюмины, сплавы меди и др. В качестве защитного покрытия для плакирования широко используются алюминий, тантал, молибден, титан, никель, нержавеющие стали и др. Толщина плакирующего слоя колеблется от 3 до 60 % толщины защищаемого металла. [c.89]

    До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]


    Черные сплавы (различные сорта сталей). В качестве наиболее обычных составных частей сталей можно указать марганец, никель, хром, ванадий, молибден, вольфрам, алюминий, медь. В качестве более редких составных частей можно указать титан, цирконий, селен, теллур, кобальт, ниобий, тантал, бор. [c.225]

    Борьба с коррозией — большая народнохозяйственная задача. Исследование механизма, скорости коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Металлы от коррозии защищают, нанося на них покрытия из более стойких в данной среде металлов, покрытия из лаков, красок, эмалей и других материалов. Некоторые металлы, например, железо, хром, никель, кобальт, алюминий, титан, тантал, вольфрам, ниобий, под влиянием кислорода и в различных окислительных средах способны пассивироваться, т. е. переходить в состояние повышенной коррозионной устойчивости (в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное торможением анодного процесса. Способность пассивироваться широко используется для защиты этих металлов от коррозии и для придания сплавам повышенной коррозионной стойкости методом легирования. Так, введя в сплавы на основе железа хром, никель, алюминий и неко- [c.176]

    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]

    Когда была открыта электрополировка, химическое глянцевание меди было уже известно [191. В последующие годы были предложены ванны для глянцевания и пассивации катодных осадков цинка и кадмия, но только к 1948 г. эти процессы настолько развились, что их можно было рассматривать как химическую лолировку [20]. В настоящее время эти процессы применяют для полировки большинства металлов (алюминий, бериллий, медь, углеродистая сталь, германий, свинец, магний, никель, тантал, титан, цинк, цирконий) и для многих сплавов. Но химическая полировка как для промышленных целей, так и для научного исследования менее пригодна, чем электролитическая. [c.18]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    Из этих данных видно, что для наиболее распространенных однокомпонентных систем. коррозионностойкими материалами являются алюминий, медь, никель, бронза, латунь, серебро, платина, титан, тантал, вольфрам, монельметалл, ниобий, сталь углеродистая и нержавеющая, танталониобиевый сплав и хастеллой С. [c.93]

    Никель образует твердые растворы со многими элемен ами, что обусловливает значительные возможности достижения высокой жаропрочности сплавов на его основе. Тем-1ературная зависимость растворимости некоторых элемен-ов приведена на рис. 192. При 1000°С кобальт, железо, 1арганец и медь образуют неограниченные твердые раст-юры, а такие тугоплавкие металлы, как хром, вольфрам, лолибден, тантал, ниобий, ванадий, — ограниченные твер-1,ые растворы с различными об-[астями гомогенности. Раствори-юсть при 1000°С таких элементов, как титан и алюминий, со- тавляет соответственно 10 и 7 %. [c.323]


Смотреть страницы где упоминается термин сплавы алюминия никеля тантал титан: [c.587]    [c.137]    [c.148]    [c.177]    [c.798]    [c.65]    [c.686]    [c.260]    [c.393]    [c.260]    [c.260]   
Коррозия металлов Книга 1,2 (1952) -- [ c.388 ]

Коррозия металлов Книга 2 (1952) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы титана

Тантал

Титан от никеля



© 2025 chem21.info Реклама на сайте