Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование солей нитросоединений

    При алкилировании солей азотистой кислоты галоидным алкилами идут две конкурирующие реакции. Преобладание одной из них зависит не столько от условий, сколько от характера алкила и металла азотистокислой соли. По первому, нормальному направлению получается эфир азотистой кислоты, по второму, протекающему с переносом реакционного центра (см. стр. 425), образуется изомерное нитросоединение, в котором азот непосредственно связан с углеродом  [c.216]


    К сожалению, реакции алкилирования, аналогичные алкилиро-ванию карбонильных соединений при катализе основаниями, в целом оказываются неприменимыми для введения алкильных групп в нитросоединения, поскольку С-алкилирование солей первичных нитросоединений обычно происходит медленнее, чем 0-алкилиро-вание. [c.88]

    Способность нитросоединений к 0-алкилированию уменьшается от моно- к тринитросоединениям. Это наглядно видно на призере алкилирования соответствующих серебряных солей иодистыми алкилами. Если в случае мононитросоединений всегда образуются продукты 0-алкилирования, то для тринитрометана лишь в редких случаях можно предположить алкилирование по кислороду. [c.34]

    В изучении этих химических процессов или, иными словами, в развитии химической технологии отдельных веществ и продуктов, например, синтетического аммиака, каучуков, пластических масс, черных, цветных и редких металлов, стекла, цемента и т. п., достигнуты огромные успехи. Эти успехи обусловили технический прогресс соответствующих отраслей промышленности. Однако научная классификация химических процессов продолжает оставаться одной из важных задач химической технологии как науки. По аналогии с классификацией физических и физикохимических процессов химической технологии делаются попытки классифицировать промышленные химические реакции по основным химическим процессам . Так, предлагалась следующая классификация химических процессов обменное разложение и солеобразование (минеральные удобрения и соли), окисление (серная кислота, азотная кислота, органические кислородные соединения и др.), гидрирование (аммиак, метанол и другие спирты, аминосоединения ароматического ряда, получаемые гидрированием нитросоединений, и т. п.), аминирование (мочевина, аминосоединения жирного и ароматического рядов), хлорирование (химические средства защиты растений), нитрование (взрывчатые вещества), сульфирование (синтетические моющие вещества), электрохимические процессы (электролиз водных растворов, электролиз в расплавленных средах, электрохимическое окисление и восстановление), процессы высокотемпературного и каталитического крекинга и пиролиза жидкостей и газов (нефтепереработка, получение олефинов из природных газов и др.), процессы полимеризации и поликонденсации (получение пластических масс, синтетических каучуков, химических волокон), процессы высокотемпературной переработки твердых тел (коксование углей, производство карбида кальция, стекла, цемента, сернистого натрия), алкилирование и арилирование и т. д. [c.138]


    Нитросоединения с нитрогруппой в ядре. Благодаря легкости получения ароматические иитросоединения имеют гораздо большее промышленное и препаративное значение, чем иитросоединения жирного ряда. В то время как алифатические нитросоединения (стр. 173 получаются преимуш,ественно путем алкилирования солей азотистой кислоты, в ароматическом ряду можно проводить прямое нитрование углеводородов, т. е. подвергать их действию крепкой азотной кислоты. [c.527]

    Наиболее ярко двойственная реакционная способность анионов нитроалканов проявляется в реакции алкилирования и, несколько меньше, в реакции ацилирования нитросоединений. Более подробно изучено алкилирование солей нитроалканов С-галогенпроиз-водными. Анион нитроалкана, имеющий два реакционных центра (кислород нитрогруппы и углерод, связанный с ней), может реагировать по двум направлениям  [c.26]

    Известно, что соли нитроалканов при взаимодействии с алкил-галогенидами по механизму нуклеофильного замещения образуют в случае С-алкилирования замещенные нитросоединения, а в случае 0-алкилирования — карбонильные производные, получающиеся в результате распада промежуточных нитрониевых эфиров. Алкилирование солей нитроалканов галогеналкенами изучено в меньшей степени. [c.40]

    При алкилировании натриевых или калиевых солей нитросоединений галогеиалкилами не удалось выделить нитроновых эфиров [65, 196, 387, 389, 392, 396, 397[. Из реакционной смеси получают лишь оксимы, альдегиды, кетоны и продукты С-алкилирования. [c.320]

    Наконец, следует рассмотреть сравнительную способность солей нитросоединений к реакциям С-и 0-алкилирования [423в]. Как известно, вероятность С- и 0-алкилирования зависит от трех основных факторов а) природы, отщепляющейся группы в алкилирующем агенте, б) строения алкилирующего агента и в) строения аниона соли. Кроме того, на направление реакции могут оказывать влияние природа катиона и растворителя, температура реакции, растворимость реагентов и конечных продуктов. [c.322]

    Из электрохимических производств, основанных на использовании электролиза для проведения окислительных или восстановительных реакций, можно назвать электрохимическое окисление Na l в Na lOa производство перхлоратов окислением хлоратов электрохимическое получение хлорной кислоты при обессоливании морской и минерализованных вод электролизным методом получение диоксида хлора и т. д. В органической химии процессы электролиза используются в реакциях катодного восстановления нитросоединений, иминов, имидоэфиров, альдегидов и кетонов, карбоновых кислот, сложных эфиров, а также в реакциях анодного окисления жирных кислот и их солей, ненасыщенных кислот ароматического ряда, ацетилирова-ния, алкилирования и др. [c.357]

    Хотя в некоторых случаях этот синтез позволяет получать удовлетворительные выходы, трудно дать ему оценку. Образующиеся в начале нитро-соли часто бывают гигроскопичными, что затрудняет нх очистку. Фактические же выходы в расчете на получающиеся продукты присоединения брома иногда достигают количественных. К тому же превращение соли в нитросоединение может приводить к разложению с образованием альдегида или кетона [16]. Помимо этих осложнений, в некоторых случаях, например при использовании этилового эфира малоновой кислоты и ацетоуксусного эфира, протекает скорее алкилирование, чем нитрование [17]. Однако установлено, что применение нитрата ацетонциангидрина [14] позволяет проводить нитрование этих соединений (в разд. А-1 рассмотрены другие случаи нитрования). Для а-нитропроизводных сложных эфиров этот синтез рассматривается в качестве предпочтительного [2], хотя меиее эффективен, чем синтез из -галогенпроизводных этих эфиров и нитрита натрия (разд. Б.1). [c.493]

    Обработка солей алифатических нитросоединений (34) алкилгалогенидами приводит к алкилированию либо по атому углерода либо по атому кислорода. В общем случае алкилирование по кислороду, которое по реакции 5л 2 через промежуточное образование нитроновых эфиров (35) приводит к карбонильным соединениям и оксимам, лишь в очень малой степени или вообще не сопровождается алкилированием по углероду [схема (107)]. Однако Корн-блюм и сотр. показали [83], что при реакциях 2-нитропропана с -нитробензилгалогенидами протекает как О- так и С-алкилиро-вание, соотношение между которыми зависит от природы замещаемого галогена. Удалось раздельно определить константы скорости О- и С-алкилирования для различных галогенидов, и оказалось, что если константа скорости 0-алкилирования при переходе от С1 к Вг и I возрастает в 900 раз, что согласуется с механизмом Sn2, то в случае С-алкилирования эти константы изменяются только в 6 раз. Такое небольшое изменение скорости противоречит механизму 5л 2 и заставляет думать, что здесь имеет место ради кально-ценной механизм, рассмотренный вначале этого раздела Другими доказательствами такого механизма являются обнару жение с помощью ЭПР-спектроскопии промежуточно образующих ся радикалов, подавление С-алкилирования введением ингибито ров радикальных процессов, ускорение С-алкилирования при фотолизе. Дополнительные примеры замещения по механизму, включающему перенос электрона, приведены на схемах (108). (109) [c.668]


    Подобный распад солей азосоединений может быть с успехом использован для установления строения азосоединений в тех случаях, где это не удается сделать с помощью обычного метода восстановления. Операция состоит в прибавлении азосЛдинения к 10—20-кратному по весу количеству дымящей азотной кислоты при комнатной температуре. При этом азосоединение растворяется с изменением окраски. Через 10 мин. раствор выливают нз лед. Выделившееся нитросоединение отфильтровывают и 3 водном растворе открывают соль диазония. Однако этот метод может быть применен только в случае алкилированных аминоазосоединений и азоэфиров. Метод не дает удовлетворительных результатов при работе с простыми азосоединениями, напрнмер с азобензолом или азотолуолом, а также в случае о-замещенных азосоединений за исключением производных 3-нафтола. [c.462]

    Алкилирование оксониевыми солями натриевых и калиевых солей ациформ нитросоединений парафинового ряда приводит к образованию оксимов и в 1<ачестве побочных продуктов 0-алкиловых эфиров окси-мов [89]. Например, при взаимодействии [(С2Н5)дО[ВР4 с питроцикло-гексапом в водном растворе NaOH при 50—60° получается оксим цикло-гексанона с выходом 74% и 0-этиловый эфир оксима циклогексанона с выходом 19%. [c.35]

    Диметилформамид и диметилсульфоксид являются поэтому очень подходящими растворителями для алкилирования амидов, малоновых эфиров, для си1 теза нитрилов по Кольбе (см. данные, приведенные в табл. 33), алкилциа-натов, простых эфиров или тиоэфиров по Вильямсону, сложных эфиров карбоновых кислот из щелочных солей и алкилгалогенидов, нитросоединений по Корнблюму, для присоединения по Михаэлю и нуклеофильного замещения в активированных ароматических соединениях. [c.174]

    С первыми работами В. М. Родионова в области алкалоидов тесно связаны его исследования по алкилированию органических соединений, в результате которых им были предложены и внедрены в промышленность такие дешевые алкилирующие средства, как эфиры ароматических сульфокислот и четвертичные основания, получаемые из солей типа тг-толуол-сульфонатов триметилфениламмония. В. М. Родионов разработал простые способы их получения и всесторонне изучил их свойства, что дало возможность при помощи эфиров ароматических сульфокислот получить целый ряд органических соединений, относящихся к галоидным алкилам, нитрилам, нитросоединениям и др., а при помощи четвертичных оснований подвергнуть избирательному алкилированию фенольные гидроксилы в амино-фенолах, гетероциклических соединениях и алкалоидах. Свое значение эти алкилирующие средства полностью сохранили и до настоящего времени. [c.13]


Смотреть страницы где упоминается термин Алкилирование солей нитросоединений: [c.19]    [c.387]    [c.323]    [c.387]    [c.125]    [c.98]    [c.125]    [c.98]    [c.9]   
Химия нитро- и нитрозогрупп Том 1 (1972) -- [ c.314 , c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Нитросоединения

Нитросоединения аци-Нитросоединения



© 2025 chem21.info Реклама на сайте