Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин остатки

    Содержание гистидина велико (до 10% в гемоглобине). Остаток гистидина часто вхо-дит в состав активных центров ферментов, что, очевидно, связано со способностью имидазольного кольца протонироваться и депротонироваться при значениях pH, близких к физиологическим. При декарбоксилировании гистидина образуется биологический амин — гистамин, медиатор нервной системы. [c.18]


    Структурное подобие цитохромов -типа и глобинов. Аминокислотная последовательность цитохрома 562 отличается от последовательностей 2-гсф и 5-гсф, но, по-видимому, гомологична последовательности миоглобина [558]. Эти данные, а также результаты некоторых других исследований [559], показавших возможность существования непрерывного набора гомологичных структур в интервале от цитохромов 6-типа до глобинов, дали толчок к сравнительным исследованиям [406, 560] известных пространственных структур 5-гсф и (3-цепи гемоглобина. Это сопоставление показало 1560], что из 85 остатков цитохрома 5-гсф, пространственное расположение которых известно, 51 остаток имеет свой аналог в глобине. При совмещении обеих структур атомы железа гема оказываются [c.224]

    Расшифрованы первичные структуры миоглобина человека (153 аминокислотных остатка), а-цепи (141) и 3-цепи (146) гемоглобина человека, цитохрома С из сердечной мышцы человека (104), лизоцима молока человека (130), химотрипсиногена быка (245) и многих других белков, в том числе ферментов и токсинов. На рис. 1.14 представлена последовательность аминокислотных остатков проинсулина. Видно, что молекула инсулина (выделена темными кружками), состоящая из двух цепей (А-21 и В-30 аминокислотных остатков), образуется из своего предшественника-проинсулина (84 аминокислотных остатка), представленного одной полипептидной цепью, после отщепления от него пептида, состоящего из 33 аминокислотных остатков. Строение молекулы инсулина (51 аминокислотный остаток) схематически можно представить следующим образом  [c.57]

    В гемоглобине Е остаток глутаминово кислоты в положении 9 этого пептида замещен на лизин. На основании состояния исследований на 1961 г. можно с уверенностью утверждать, что проблема установления последовательности аминокислот даже в сложных белках будет разрешена при помощи известных методов (см. также Рибонуклеаза , стр. 439). [c.433]

    Мутантный гемоглобин Нормальный остаток и его положение в цепи Остаток, появляющийся в мутантном белке [c.219]

    Идентификация мутантного гемоглобина. Препарат мутантного гемоглобина подвергли трипсиновому гидролизу, а затем получили пептидную карту. При этом выяснилось, что мутантный гемоглобин отличается от нормального гемоглобина А тем, что содержит в одном из пептидов вместо остатка аспарагина остаток лизина. [c.225]

    После многолетних исследований серповидноклеточной анемии (малокровия) стало очевидным, что мутация определенного гена приводит к изменениям химической структуры молекулы гемоглобина. Основной тип гемоглобина взрослого человека состоит из четырех полипептидных (белковых) цепей двух идентичных а-цепей и двух идентичных Р-цепей (агРг). В 1957 г. В. Ингрем обнаружил, что нормальный и серповидноклеточный гемоглобины содержат одинаковые а-цепи, но различные (3-цепи. Различия между нормальной и мутантной (З-цепью заключались в том, что в серповидноклеточном гемоглобине остаток глутаминовой кислоты в 6-м положении заменен на остаток валина. Таким образом, различия между нормальным и мутантным вариантом, вызывающим заболевание, явились следствием молекулярного события — замены единственной аминокислоты в соответствующем белке. Выяснение природы серповидноклеточной анемии дало название целому классу заболеваний человека — молекулярные болезни . [c.72]


    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    В хлорофилле порфириновая группировка комплексно связана не с железом, как в гемоглобине, а с магнием. Кроме того, она отличается от порфириновой группировки в геме некоторыми радикалами и функциональными группами в пиррольных кольцах. Существенно то, что в кольце IV хлорофилла имеется эфирно связанный остаток высокомолекулярного спирта фитола С20Н39ОН. [c.421]

    Взаимосвязь между генами и молекулами белка можно проследить на примере разных форм гемоглобина, обнаруженных в эритроцитах человека. В 1949 г. было установлено, что у некоторых людей, страдающих серповидноклеточной анемией, эритроцит содержит форму гемоглобина (гемоглобин S), которая отличается от гемоглобина эритроцитов большинства людей (гемоглобин А). Различие этих форм невелико две а-цепи молекулы гемоглобина S идентичны а-цепям молекулы гемоглобина А, а -цепи различаются одним аминокислотным остатком. -Цепь гемоглобина А имеет в шестом положении, считая от ЫНа-конца полипептидной цепи, остаток глутаминовой кислоты, в то время как -цепь гемоглобина S имеет в этом положении остаток валина все другие остатки аминокислот те же, что и в гемоглобине А. [c.453]

    У человека существует, однако, несколько известных мутаций, изменяющих аминокислотную последовательность в а-цепи или в -цепи гемоглобина так, что легкость, с которой окисляется атом железа, возрастает, в результате чего и развивается ферригемоглобинемия. Одна из таких мутаций приводит к замене остатка гистидина в положении 58 а-цепи на остаток тирозина. Боковая цепь тирозина содержит оксибензольное кольцо, которое, обладая свойствами кислоты, не притягивает протона и не приобретает положительного заряда. Электростатическое поле, удерживающее электрон железа, в этом случае не образуется, й железо(И) гем-групп в двух цепях молекулы гемоглобина окисляется до железа(III). Возникающее заболевание называют ферригемоглобинемией по а-цепям. [c.468]

    Почему ферригемоглобинемия возникает при замещении остатка гистидина в положении 58 а-цепи или в положении 63 -цепи гемоглобина на остаток тирозина Почему эта болезнь не развивается при замене гистидина аргинином  [c.470]

    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Ф.-кодируемая, незаменимая аминокислота, встречается во всех организмах в составе молекул белков, напр, в оваль-бумине, зеине, фибрине, инсулине, гемоглобине входит в состав пептидов-подсластителей (см. Аспартам), соматоста-тина и энкефалина. Остаток D-Ф. входит в грамицидин S и нек-рые др. пептиды. [c.65]

    Остаток тирозина НС-2, расположенный на втором месте со стороны С-конца, является одним из немногочисленных инвариантных остатков в молекуле гемоглобина. Положение его сохранилось в процессе эволюции в гемоглобинах и миоглобинах всех изученных видов. В де-зоксигемоглобине тирозин НС-2 лежит как бы в кармане , образуемом Н- и F-спиралями, и связан водородной связью с карбонильной группой полипептидной цепи у остатка FG-5 (рис. 4-17 и 4-19). Перутц и его сотрудники обнаружили, что при оксигенации этот тирозин выходит из кармана, солевые мостики на концах молекул разрываются и субъединицы смещаются, образуя новую систему связей, характерную для оксигемоглобина. Оксигенация двух гемов (Перутц считает, что ими являются гемы а-цепей) приводит к кооперативному конформационному изменению всех четырех субъединиц [71, 72]. [c.307]

    Что же общего между всеми гемоглобинами Прежде всего для них характерен один и тот же способ укладки полипептидных цепей вокруг идентичных для всех гемоглобинов (или очень сходных) гемогрупп. Однако наиболее поразительным является тот факт, что, несмотря на четко выраженное единообразие общей структуры всех гемоглобинов, имеется всего девять инвариантных аминокислотных остатков и один почти инвариантный. Эти десять остатков заключены на рис. 4-17 в прямоугольные рамки. Два глицина (или аланина) в положениях В-6 и Е-8 инвариантны потому, что тесный контакт между спиралями В и Е не позволяет находиться в этих положениях аминокислотным остаткам большего размера. Пролин С-2 обеспечивает изгиб молекулы. Четыре других инвариантных остатка непосредственно связаны с гемогруппой. Два из них. His Е-7 и His F-8, являются гем-связанными гистидинами. Девятый остаток. Туг НС-2, о котором уже шла речь в разд. 5.а, играет основную роль в кооперативном связывании кислорода. И только Lys Н-9 расположен с наружной стороны молекулы. Причины, по которым этот остаток инвариантен, не ясны [80]. [c.314]


    ЧТО замена того же остатка глутаминовой кислоты на остаток лизина дает гемоглобин С, наличие которого не связано с такими серьезными патологическими нарушениями, как при серповидноклеточной анемии. Ряд других замен, которые удалось выявить и идентифицировать, приведен на рис. 4-17. [c.317]

    Химический аналог активного центра гемоглобина [727]. в центре схемы находится протогем IX. Одна пропионовая боковая цепь (вверху справа) образует пептидную связь с аналогом периферического His гемоглобина, который связан с полиэтиленгликолем (ПЭГ) через остаток Gly. Другая пропионовая группа (внизу справа) связана через разделительную цепь с имидазолом, который представляет аналог приближенного His. Хнмическни переносчик Оа качественно сходен с гемоглобином по характеру обратимого связывания молекулярного кислорода и по некоторым [c.252]

    Гем а вместо метильной группы содержит формильный остаток (в 8-м положении) и вместо одной винильной группы (во 2-м положении)—изопре-ноидную цепь. Железо своими четырьмя связями образует комплекс с порфирином, а оставшиеся 5-я и 6-я координационные связи железа в молекулах гемоглобина и цитохромов связываются с белковыми компонентами по-разному. В частности, в гемоглобинах (и миоглобине) благодаря 5-й координационной связи железо соединяется с атомом азота имидазольной группы гистидина белковой молекулы. Шестая координационная связь железа предназначена для присоединения кислорода (с образованием оксигемоглобина и оксимиоглобина) или других лигандов СО, цианидов и др. (рис. 2.1). В цитохромах, напротив, и 5-я, и 6-я координационные связи железа соединены с остатками гистидина и метионина (в цитохроме с обе винильные группы соединены еще и с остатками цистеина) белковой молекулы. Этим, вероятнее всего, могут быть объяснены функции железа в гемоглобине, валентность которого не изменяется при присоединении кислорода (в отличие от валентности железа в цитохромах) в гемоглобине железо остается двухвалентным независимо от присоединения или отдачи кислорода. [c.80]

    Приведенные в табл. 17.2 цифры показывают, что если бы каждый остаток в белке был отобран с наблюдаемой скоростью, то времени существования Вселенной было бы недостаточЕш для создания белка, например а-цепи гемоглобина. В ней имеется 141 остаток. Скорость замещения (отбора ) 1,4-10 в год, т. е. время замещения одного остатка составляет 0,7 10 лет. Для замещений 141 остатка нужно около 10 лет. [c.559]

    Первичная структура белков определяется их составом и может быть описана последовательностью а-аминокислотных остатков в поли-пептидных цепях. Эта последовательность определяет строение белка. Для установления первичной структуры используются разнообразные методы деструкции, которые были уже рассмотрены в разделе, посвященном пептидам. Однако исследование первичной структуры белков вследствие наличия более длинных цепей является гораздо более сложным делом и связано с большими затратами времени, чем у пептидов. К примеру, миоглобин содержит одну нолипептидную цепь, состоящую из 153 аминокислотных остатков, а глобин имеет четыре полииеитидные цепи, две пары которых построены аналогично и содержат соответственно 141 (а-цепи) и 146 (р-цепи) аминокислотных остатков. В одной из патологических форм гемоглобина, возникающей при серповидной анемии и наблюдаемой прежде всего у африканцев, только один единственный аминокислотный остаток глутамина в р-цепи нормального глобина замещен на остаток валина. [c.656]

    Из продуктов переработки крови в СССР в настоящее время для пластических масс употребляется черный кровяной альбумин, высушенный распылением. Для его изготовления кровь освобождается от фибрина, сепарируется для отделения светлого и темного альбумина и остаток, состоящий из альбумина, глобулина, гемоглобина и остаточного, не выделенного при дефибрировании фибрина, рафинируется и сушится распылением. Остаточная влага в черном альбумине должна быть доведена до S /o. В противном случае альбумин досушивается на пуговичной фабрике. [c.197]

    Специфическое химическое рсхш пление пептидных связей можно осуществить с помощью двух окисляющих агентов. Один из них, Ы-бромсукцинимид, вызывает расщепление пептидной связи, в которой участвует остаток триптофана, с одновременным разрушением этого остатка и его окислением [64]. Успешное использование этого метода удалось лишь в нескольких случаях. Помимо изучения структуры полипептида, выделенного из вируса табачной мозаики, Ы-бромсукцинимид был использован при анализе последовательности низкомолекулярного глюкагона [58 и М-кон-цевой последовательности гемоглобина [79]. Существенный недостаток этого метода заключается в том,что М-бромсукцинимид расщепляет не все пептидные связи, образуемые остатками триптофана. [c.36]

    I Атом железа в геме имеет октаэдрическую конфигурацию, е., железо здесь шестикоординационное. Ион Ре находится центре плоского порфинового квадрата и связан с четырьмя ромами азота пиррольных колец (см. 10.1). Пятым лигандом 4и1яется остаток Н15-87 в а-цепи (или Н1з-92 в.р-цепи), с ато-№м азота которого осуществляется координационная связь тома железа. Шестое координационное место (по другую сто-р ну плоскости порфинового цикла) в. отсутствие кислорода в имает молекула воды. При взаимодействии попавшего легкие кислорода с гемоглобином происходит замещение олекулы воды на кислород, приводящее к образованию окси-[( моглобина (рис. 11.16). Необычным является то, что в этом Ьмплексе Ре + не окисляется в Ре +. Это объясняется тем, 0 в гемовом кармане молекула Ог находится в гидрофобном окружении. [c.375]

    Примерами сложных белков могут служить транспортные белки миоглобин и гемоглобин, в которых белковая часть — глобин — соединена с простетической группой — г е м о м. По типу простетической группы их относят к гемопротеинам. Фосфопротеины содержат остаток фосфорной кислоты, металлопротеины — ионы металла. [c.376]

    Мы рассмотрели самосборку вирусов, где жизненно важным является объединение белковых субъединиц в надмолекулярную структуру (икосаэдр, спираль). Интересно упомянуть о ситуации, когда самосборка белковых единиц в подобную структуру оказывается опасной для жизни. Таким случаем является известная наследственная болезнь - серповидно клеточная анемия, встречающаяся примерно в одном случае на 1(К)00 человек. Гемоглобин в здоровой клетке существует в виде тетрамеров, состоящих из двух идентичных а-цепей и двух идентичных 3-цецей. У больных серповидноклеточной анемией гемоглобин (называемый гемоглобином S в отличие от обычного гемоглобина А) отличается от нормального гемоглобина единственным аминокислотным остатком а-цепи этих двух гемоглобинов одинаковы, а в )3 цепи в гемоглобине S нормальный шестой (начиная с А -конца) аминокислотный остаток — глютаминовая кислота — замещен валином. В отличие от глютаминовой кислоты, в которой имеется кислая A-rpynna A-группа валина является нейтральной. В настоящее время считается, что валин [c.95]

    Гемоглобин 8 (появляющийся при болезни, называемой сиклемией) отличается от гемоглобина А тем, что остаток глутамина в положении 6 цепи р замещен на валин. В гемоглобине С, возникающем нри другой болезни, тот же аминокислотный остаток замещен на лизин. В гемоглобине Сг остаток глутаминовой кислоты в положении 7 той же цепи замещен на гликоколь. Гемоглобин Е отличается от гемоглобина А тем, что оп содержит другой аминокислотный остаток в более удаленном положении, а именно в одном из пептидов, образующихся при гидролизе гемоглобина А трипсином, наблюдается следующая последовательность аминокислот  [c.433]

    Известен также метод пептидных карт, позволяющий устанавливать незначительные различия в первичной структуре родственных Б. Для этого Б. частично гидролизуют специфич. протеолитич. ферментами (особенно удобен трипсин, разрывающий пептидные связи у карбонильных п)упп остатков лизина и аргинина), затем пептиды каждого Б pa дeляют электрофорезом и распределительной хроматографией При сравнении полученных пептидных карт различных Б оказывается, что все идентичные пептиды располагаются в определенных (одних и тех же) местах, за исключением пептидов, по к-рым Б отличаются друг от друга Этим методом впервые обнаружено, что при замене одного остатка глутаминовой к-ты в молекуле гемоглобина на остаток валина образуется серповидноклеточный гемоглобин, встречающийся при одном из видов анемии. Методом пептидных карт изучают генетич. аспекты эвотюционных изменений Б. и выявляют изменения Б. при различных заболеваниях. [c.121]

    В результате мутации гена, кодирующего р-цепь, остаток глутаминовой кислоты, присутствующий в положении 6 3-цепи нормального гемоглобина А, замещен на остаток валина. Такая замена приводит к утрате одного отрицательного заряда в каждой из двух Р-цепей. Б. Расположение 163 мутаций (кружки, обведенные черной линией), зарегистрированных в гемоглобинах человека к 1979 г. 105 мутаций находится в Р-цепях и 58 мутаций - в а-цепях. Инвариантные для обеих цепей остатки обозначены красными кружками. Мутации, локализованные в окрестности гемогруппы, с большой степенью вероятности приводят к серьезным функциональным нарушениям гемоглобина. [c.218]

    У людей, страдающих серповидноклеточной анемией, ген, ответственный за синтез Р-цепи гемоглобина, вследствие необратимой мутации кодирует включение остатка валина в положение, где в нормальном гемоглобине находится остаток глутаминовой кислоты при этом все остальные аминокислоты Р-цепи занимают свои обычные положения. Серповидноклеточный гемоглобин-это результат только одной из более 300 различных мутаций, обнаруженных в гемоглобинов ьк генах человека, причем в большинстве случаев такие мутации приводят к замене какой-нибудь одной аминокислоты в а- или Р-цепи гемоглобина (рис. 8-23 табл. 8-4). Многие из этих мутаций бьши выявлены при помощи электрофоретических тестов, а также из анализа пептидных карт гемоглобина, вьщеленного из крови больных, у которых эритроциты имели те или иные отклонения от нормы. [c.219]


Смотреть страницы где упоминается термин Гемоглобин остатки: [c.363]    [c.669]    [c.439]    [c.468]    [c.516]    [c.316]    [c.527]    [c.559]    [c.558]    [c.89]    [c.206]    [c.681]    [c.379]    [c.124]    [c.154]    [c.217]    [c.219]    [c.691]    [c.254]   
Современная генетика Т.3 (1988) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте