Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инсулин глюконеогенез

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]


    Повышение глюконеогенеза в печени Повышение гликогенолиза в печени Повышение гликогенолиза в мышцах Повышение секреции инсулина глюкагона ренина [c.226]

    Биохимические функции. Глюкагон является гормоном-антагонистом инсулина. Он стимулирует гликогенолиз и липолиз, а также активирует процесс глюконеогенеза. Глюкагон взаимодействует с клетками-мишенями по мембрано-опосредованному механизму (гл. 11). Через вторичный посредник — цАМФ он активирует протеинкиназу, киназу фосфорилазу и фосфорилазу Ь, что приводит к мобилизации глюкозы из гликогена. Как и инсулин, глюкагон регулирует метаболические процессы преимущественно в печени, мышцах и жировой ткани. [c.167]

    Углеводный обмен. В плане влияния на углеводный обмен гормон роста является антагонистом инсулина. Гипергликемия, возникающая после введения ГР,— результат сочетания сниженной периферической утилизации глюкозы и ее повышенной продукции печенью в процессе глюконеогенеза. Действуя на печень, ГР увеличивает содержание в ней гликогена, вероятно, вследствие активации глюконеогенеза из аминокислот. ГР может вызывать нарушение некоторых стадий гликолиза, а также торможение транспорта глюкозы. Обусловлен ли данный эффект прямым действием ГР на транспорт или он является результатом подавления гликолиза, пока не установлено. Ингибирование гликолиза в мышцах может быть также связано с мобилизацией жирных кислот из триацилглицероловых резервов. При длительном введении ГР существует опасность возникновения сахарного диабета. [c.175]

    Введение инсулина вызывает быстрое восстановление всех нарушений обмена при диабете ускорение фосфорилирования и транспорта глюкозы в клетки, замедление глюконеогенеза, ускорение синтеза жирных кислот и замедление их окисления, исчезновение ацетоновых тел, накопление жира в жировой ткани и т. д. и в результате всего этого снижение содержания сахара в крови. [c.288]

    Снижение концентрации инсулина при физических нагрузках уменьшает поступление глюкозы в ткани и способствует увеличению ее уровня в крови, а повышение концентрации гормонов — антагонистов инсулина (глюкагона, адреналина, кортизола, соматотропина) увеличивает уровень глюкозы за счет мобилизации ее из печени или активации глюконеогенеза. Изменение соотношения этих гормонов влияет на метаболические процессы в работающих мышцах и других тканях. [c.273]

    Эффекты глюкагона, как правило, противоположны эффектам инсулина. Если инсулин способствует запасанию энергии, стимулируя гликогенез, липогенез и синтез белка, то глюкагон, стимулируя гликогенолиз и липолиз, вызывает быструю мобилизацию источников потенциальной энергии с образованием глюкозы и жирных кислот соответственно. Глюкагон— наиболее активный стимулятор глюконеогенеза кроме того, он обладает и кетогенным действием. [c.264]


    Обмен углеводов. Инсулин стимулирует гликолиз, повышая активность ключевых ферментов глюкокиназы, фосфофруктокиназы и пируваткиназы. В печени он снижает активность глюкозо-6-фос-фатазы. Эти процессы и стимуляция трансмембранного транспорта глюкозы обеспечивают поток глюкозы из крови в клетки. Инсулин стимулирует синтез гликогена за счет активации гликогенсинтазы (дефосфорилирование фермента в форму / — активную) этот процесс сопряжен с активацией фосфодиэстеразы и уменьшением внутриклеточной концентрации цАМФ, а также активацией фосфатазы гликогенсинтетазы. Действие инсулина на транспорт глюкозы, гликолиз, гликогеногенез продолжается секунды-минуты и включает фосфорилирование-дефосфорилирование ферментов. Длительное действие на уровень глюкозы в плазме зависит от ингибирования инсулином глюконеогенеза в печени гормон тормозит синтез ключевого фермента — фосфоенолпируваткарбоксикиназы (путем селективного контроля транскрипции гена, кодирующего мРНК этого фермента). Инсулин — единственный гормон, снижающий содержание глюкозы в крови. [c.391]

    Инсулин (гл. 4, разд. 9,7 гл. 5, разд. В, 5, дополнение И-В), вероятно, в комбинации с хромом (дополнение 11-Г) повышает скорость усвоения глюкозы мышцами и другими тканями. Глюкагон (гл 6, разд. Е, 5)—пептидный гормон, состоящий из 29 аминокислотных остатков, действует в первую очередь на клетки печени. Глюкагон выделяется а-клетками островков Лангерганса поджелудочной железы, т. е. теми же клетками, которые продуцируют инсулин. Однако действие глюкагона антагонистично действию инсулина, поскольку он повышает содержание глюкозы в крови, стимулируя расщепление гликогена печени. Он стимулирует также процесс глюконеогенеза, причем оба эти эффекта опосредованы действием циклической АМР [46]. Глюкокортикои-ды (гл. 12, разд. И, 3,6) ускоряют процесс глюконеогенеза и накопление глигогена в печени при помощи механизмов, рассмотренных в разд. Е, 7. [c.504]

    Адреналин и глюкагон осуществляют регуляцию метаболизма гликогена путем изменения активности гликогенфосфорилазы и гликогенсинтазы (через цАМФ) таким образом, что торможение гликогеногенеза и стимуляция гликогенолиза осуществляются одновременно, т. е. реципропно. Глюкокортикоиды (11-гидроксистероиды) усиливают глюконеогенез за счет интенсификации катаболизма белков и аминокислот в тканях и вовлечения промежуточных метаболитов в процесс глюконеогенеза. Таким образом, в рассмотренных случаях адреналин, глюкагон, глюкокортикоиды действуют как антагонисты инсулина. На содержание сахара в крови влияет также гормон щитовидной железы тироксин (подобно инсулину). Гормоны передней доли гипофиза — гормон роста (соматотропин), АКТГ и, вероятно, другие факторы повышают уровень сахара в крови, однако механизмы действия этих гормонов в значительной степени являются опосредованными, поскольку они стимулируют мобилизацию из жировой ткани свободных жирньгх кислот, которые являются ингибиторами потребления глюкозы. [c.283]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Гормон инсулин секретируется р-клетками островков Лангерганса. Инсулин оказывает многостороннее действие на обмен веществ влияет на проницаемость клеточных мембран и утилизацию глюкозы в жировой и мышечной ткани, усиливает синтез жира и гликогена из глюкозы, замедляет окисление высших жирных кислот и тормозит глюконеогенез из аминокислот. Общим эффектом действия инсулина является понижение глюкозы в крови. Этот эффект можно легко воспроизвести в ойыте, если ввести подкожно инсулин подопытному животному, например кролику. [c.136]


    Обмен липидов. Инсулин стимулирует синтез триглицеридов в жировой ткани за счет накопления ацетил-КоА и НАДФН для биосинтеза жирных кислот поддержания нормального уровня ацетил-КоА-карбоксилазы, катализирующей превращение ацетил-КоА в малонил-КоА запасания глицерина. Инсулин — потенциальный ингибитор липолиза в печени и жировой ткани (из-за уменьшения концентрации цАМФ нет эффективной активации триглицеридли-пазы). Он уменьшает концентрацию циркулирующих неэстерифи-цированных жирных кислот (ингибируют гликолиз и стимулируют глюконеогенез). [c.391]

    При многих патологических состояниях, в частности при сахарном диабете, отмечаются существенные изменения в функционировании и регуляции системы Ф-2,6-Р,. Установлено, что при экспериментальном (стептозотоциновом) диабете у крыс на фоне резкого увеличения уровня глюкозы в крови и моче в гепатоцитах содержание Ф-2,6-Р, снижено. Следовательно, снижается скорость гликолиза и усиливается глюконеогенез. Данный факт имеет свое объяснение. Возникающие у крыс при диабете нарушения гормонального фона увеличение концентрации глюкагона и уменьшение содержания инсулина—обусловливают повышение концентрации цАМФ в ткани печени, усиление цАМФ-зависимого фосфо- [c.554]

    Гидрокортизон, кортизол (Пр,17а,21-триоксипрегнен-4-дион-3,20, т. пл. 220 °С) и кортикостерон (11р,21-диоксипрегнен-4-дион-3,20, т.пл. 182 °С) относятся к глюкокортикоидам. Они действуют как антагонисты инсулина и повышают содержание сахара в крови, возбуждая в печени процессы глюконеогенеза (см. раздел 3.8.1), препятствуя ие-пользованию глюкозы в мускулах. [c.691]

    Поддержание постоянства содержания сахара в крови регулируется гормонами. Инсулин понижает содержание сахара в крови, так как он тормозит как деструкцию гликогена в печени, так и процессы глюконеогенеза. В мускулах инсулин повышает интенсивность процессов потребления глюкозы (окисление, а также образование гликогена). Антагонистами инсул ина являются гормоны надпочечников кортизол (гидрокортизон), кортизон и кортикостерон они повышают содержание сахара в крови, причем в печени они стимулируют процессы глюконеогенеза, и понижают потребление глюкозы в мускулах. [c.700]

    В отсутствие инсулина снижается биосинтез белка, что отчасти объясняется уменьшением транспорта аминокислот в мышцы (аминокислоты служат субстратами для глюконеогенеза). Таким образом, инсулиновая недостаточность у человека сопровождается отрицательным азотным балансом. Характерное для этой ситуации отсутствие антилиполити-ческого действия инсулина, равно как и его липогенного действия, приводит к тому, что содержание жирных кислот в плазме возрастает. Когда оно достигает уровня, превышающего способность печени окислять жирные кислоты до СО,, в крови накапливаются Р-гидроксимасляная и ацетоуксусная кислоты (кетоз). Вначале организм компенсирует накопление этих органических кислот увеличением количества выдыхаемого СО2. Однако если развитие кетоза не сдерживается введением инсулина, то развивается тяжелый метаболический ацидоз и больной погибает от диабетической комы. Механизм инсулиновой недостаточности схематически представлен на рис. 51.11. [c.255]

    Избыточная окислительная деградация аминокислот при диабете обусловлена резким возрастанием скорости глюконеогенеза из аминокислот. Отсутствие инсулина способствует выбросу глюкозы из печени в кровь. В результате запасы гликогена в печени истощаются в этих условиях все доступные аминокислоты, чей углерод может быть использован для глюконеогенеза, подвергаются деграда- [c.774]

    В гл. 24 был описан целый ряд других изменений обмена веществ, наблюдаю-цщхся при недостатке инсулина. Так, у больных диабетом или у животных с экспериментальным диабетом, вызванным удалением поджелудочной железы либо разрушением островковой ткани путем введения аллоксана (рис. 25-18), утрачивается способность к синтезу жирных кислот и липидов из глюкозы. При этом скорость окисления жирных кислот превышает норму, что приводит к образованию избытка кетоновых тел, накапливающихся в тканях, крови и моче, т. е. к так называемому кетозу. У животных с экспериментальным диабетом снижается также скорость переноса аминокислот из крови в клетки периферических тканей, вследствие чего замедляется биосинтез белков. Вместо этого аминокислоты подвергаются в печени дезаминированию, и из их углеродных цепей в ходе глюконеогенеза (разд. 20.1) образуется глюкоза, посту- [c.798]

    Гипогликемия может носить физиологический характер как результат компенсаторного выброса инсулина. Патологическая гипогликемия может быть результатом 1) гиперинсулинемии 2) недостаточности ферментов, расщепляющих дисахариды в кишечнике 3) заболеваний печени с торможением гликогеногенеза и глюконеогенеза 4) дефицита глюкокортикоидов 5) гипоксии. [c.417]

    Их называют кортикоидами (кортикостероидами) и разделяют на три основные группы. Первую группу составляют глю-кокортикоиды, важнейшим представителем которых является кортизол (рис. 25-23) по ряду эффектов гормоны этой группы противоположны инсулину. Кортизол стимулирует процесс глюконеогенеза из аминокислот и способствует накоплению гликогена в печени он также повышает уровень глюкозы в крови и снижает использование глюкозы в периферических тканях. Кроме того, он улучшает утилизацию жирных кислот и стимулирует образование кетоновых тел. Глюкокортикоиды оказывают также выраженное противовоспалительное и антиаллергическое действие. Избыточная секреция глюкокортикоидов является причиной болезни Кушинга, для которой характерны такие признаки, как утомляемость и потеря мышечной массы (из-за повышенной скорости превраще- [c.802]

    При инсулярной недостаточности (диабете) глюкокиназа почти полностью исчезает из клеток печени (и жировой ткани), что резко замедляет усвоение глюкозы этими тканями при диабете. Введение инсулина при экспериментальном диабете восстанавливает содержание глюкокиназы в печени. Если же вместе с инсулином одновременно вводить какой-нибудь ингибитор синтеза белка (этионин, антибиотики — пуромицин и актино-мицин D и др.), то действие индуктора (инсулина) в клетках печени не реализуется и содержание глюкокиназы остается резко сниженным. Аналогичным образом было доказано индуцирующее действие инсулина на синтетазу гликогена в печени, а также роль глюкокортикостероидов в индукции синтеза ферментов глюконеогенеза. [c.288]

    На обмен углеводов соматотропин действует противоположно (антагонист) инсулину вызывает гипергликемию (снижение периферической утилизации глюкозы и повыщение продукции глюкозы печенью в глюконеогенезе) повыщает содержание гликогена в печени, возможно, за счет глюконеогенеза из аминокислот тормозит гликолиз в мыщцах из-за ингибирующего действия жирных кислот, освобождающихся при липолизе жира в липоцитах при длительном введении вызывает сахарный диабет. [c.404]

    Д. Влияние на метаболизм липидов. Липогенное действие инсулина уже рассматривалось в разделе, посвященном его влиянию на утилизацию глюкозы. Кроме того, инсулин является мощным ингибитором липолиза в печени и жировой ткани, оказывая, таким образом, непрямое анаболическое действие. Частично это может быть следствием способности инсулина снижать содержание сАМР (уровень которого в тканях повышается под действием липолити-ческих гормонов глюкагона и адреналина), а также способности инсулина ингибировать активность гормон-чувствительной липазы. В основе такого ингибирования лежит, по-видимому, активация фосфатазы, которая дефосфорилирует и тем самым инактивирует липазу или сАМР-зависимую протеинкиназу. В результате инсулин снижает содержание жирных кислот в крови. Это в свою очередь вносит вклад в действие инсулина на углеводный обмен, поскольку жирные кислоты подавляют гликолиз на нескольких этапах и стимулируют глюконеогенез. Данный пример показывает, что при обсуждении регуляции метаболизма нельзя учитывать действие лишь какого-либо одного гормона или метаболита. Регуляция—сложный процесс, в котором превращения по определенному метаболическому пути пред- [c.257]

    Гормоны регулируют облегченную диффузию, изменяя число доступных переносчиков. Инсулин повышает интенсивность транспорта глюкозы в жировых и мышечных тканях, индуцируя поступление новых переносчиков из некого внутриклеточного пула (см. рис. 51.13). Он также повышает транспорт амшюкислот в печень и другие ткани. Одним из множества скоординированных эффектов глюкокорти-коидных гормонов является повышение транспорта аминокислот в печень, где они служат субстратом глюконеогенеза. Гормон роста усиливает транспорт аминокислот во все клетки, а эстрогены стимулируют этот процесс в матке. В животных клетках существуют по меньшей мере пять разных систем переносчиков аминокислот. Каждая из них специфична к определенной группе близкородственных аминокислот и может функционировать как система симпорга с Na (рис. 42.13). [c.141]

    Г люкокортикоиды способствуют повышению выработки глюкозы в печени посредством I) увеличения скорости глюконеогенеза 2) стимуляции высвобождения аминокислот — субстратов глюконеогенеза— из периферических тканей (мышечной, лимфоидной) через активацию катаболических процессов 3) пермиссивного действия , позволяющего другим гормонам стимулировать ключевые метаболические процессы, в том числе глюконеогенез, с максимальной эффективностью. Эта активность глюкокортикоидов проявляется у голодных животных и животных с инсулиновой недостаточностью у сытых животных глюкокортикоиды необходимы для проявления максимального эффекта других гормонов. Кроме того, глюкокортикоиды тормозят потребление и использование глюкозы во внепеченоч-пых тканях. В итоге результат их действия состоит в повышении уровня глюкозы в плазме. У здоровых животных это влияние уравновешивается инсулином, оказывающим противоположный эффект. Сбалансированность этих двух воздействий обеспечивает нормальный уровень глюкозы в крови если же имеет место инсулиновая недостаточность, то введение глюкокортикоидов вызывает типергликемию в противоположном случае—при недостаточности глюкокортикоидов — снижается выработка глюкозы, уменынаются запасы гликогена и резко возрастает чувствительность к инсулину. [c.214]

    В. Влияние на образование глюкозы (глюконеогенез). Влияние инсулина на транспорт глюкозы, гликолиз и гликогенез проявляется за считанные секун- [c.256]

    Повыщенное содержание сАМР индуцирует ряд ферментов глюконеогенеза, стимулируя превращение аминокислот в глюкозу. Главная роль среди этих ферментов принадлежит ФЕПКК. Глюкагон опосредованно через с АМР повышает скорость транскрипции гена ФЕПКК, стимулируя тем самым синтез больших количеств ФЕПКК. Этот эффект противоположен действию инсулина, который подавляет транскрипцию гена ФЕПКК. Другие примеры приведены в табл. 51.7. Суммарный эффект тлю- [c.264]

    Обе дегидрогеназы пентозофосфатного пути можно классифицировать как адаптивные ферменты, поскольку их активность увеличивается у животных в условиях хорошего питания, а также при введении инсулина животным, страдающим диабетом. При диабете и голодании эти ферменты малоактивны. ЯблЬчный фермент и АТР-цитратлиаза ведут себя подобным образом это позволяет заключить, что они участвуют в липогенезе, а не в глюконеогенезе. [c.217]

    Активность пируватдегидрогеназы может регулироваться как путем фосфорилирования, катализируемого АТР-специфичной киназой и приводящего к уменьшению активности, так и путем дефосфорилирования под действием фосфатазы, приводящего к увеличению активности дегидрогеназы. При увеличении соотношений [ацетил-СоА]/[СоА], П АОН]/рЧАО ] и [АТР]/[АОР] киназа становится более активной. Следовательно, пируватдегидрогеназа и гликолиз ингибируются при окисленин жирных кислот, в процессе которого эти соотношения увеличиваются (рис. 22.3). При голодании активность дегидрогеназы уменьшается, а при действии инсулина-увеличивается в жировой ткани (но не в печени). Глюкагон ингибирует гликолиз и активирует процесс глюконеогенеза в печени путем увеличения концентрации сАМР, что в свою очередь вызывает повышение активности сАМР-зависимой протеинкиназы последняя фосфорилирует и инактивирует пируват-киназу. Глюкагон влияет также на концентрацию [c.217]


Смотреть страницы где упоминается термин Инсулин глюконеогенез: [c.360]    [c.138]    [c.417]    [c.214]    [c.221]    [c.257]    [c.262]    [c.214]    [c.221]    [c.257]    [c.262]    [c.217]   
Биохимия человека Т.2 (1993) -- [ c.256 , c.257 ]

Биохимия человека Том 2 (1993) -- [ c.256 , c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Глюконеогенез влияние инсулина

Инсулин

Инсулинома



© 2025 chem21.info Реклама на сайте