Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфатазы активация

    Биохимические функции. Кальцитонин является антагонистом паратгормона и ингибирует резорбцию костной ткани. Его биологическое действие реализуется по мембрано-опосредованному механизму и вызывает уменьшение концентрации кальция в плазме крови. КТ действует не только на минеральную составляющую костей, но и на их органический матрикс. Это проявляется в ингибировании костного коллагена, инактивации кислой фосфатазы и Р-глюкуронидазы, а также активации щелочной фосфатазы. Кальцитонин способствует транспорту фосфора из крови в костную ткань для образования гидроксиаппатита в последней, а также оказывает выраженное действие на почки, подавляя канальциевую реабсорбцию кальция и фосфора. Биологическое действие гормонов паращитовидной железы проявляется на фоне действия на обмен кальция и фосфора таких гормонов, как глюкокортикоиды и соматотропин. [c.154]


    ФОСФАТНЫЙ ПЕРЕНОС И ЕГО АКТИВАЦИЯ ИОНАМИ МЕТАЛЛОВ ЩЕЛОЧНАЯ ФОСФАТАЗА [c.624]

    Воздействие поверхности носителя на ферментную глобулу сводится к изменению ее третичной структуры. Экстраполяция к б = О позволяет найти удельную активность изолированных глобул на носителе. Для ряда мембранных ферментов, таких как сукцинатдегидрогеназа, щелочная фосфатаза или цитохром с, наблюдается заметная активация, существенно зависящая от природы взятого носителя, а наибольшие эффекты найдены при адсорбции ферментов на фосфолипидных слоях. Эти данные показывают, что адсорбция фермента на мембране может выступать как мощный фактор регуляции каталитической активности, а определение природы активирующей по- [c.294]

    Третий общий способ сопряжения гидролиза АТР с последовательностью синтетических реакций состоит в переносе концевой фосфатной группы от АТР к одной из гидроксильных групп субстрата. Затем, после того как субстрат принял участие в синтетической реакции, фосфат удаляется действием фосфатазы. Наглядным примером может служить активация сульфата [уравнение (11-4)] [4]. [c.463]

    Доведение реакции до конца (т. е. завершение такого превращения) обеспечивается тем, что образующийся пирофосфат расщепляется пиро-фосфатазой и тем самым выводится из сферы реакции. Таким образом, активация этих метаболитов обходится клетке в две высокоэнергетические связи. [c.223]

    Витамин Ог (кальциферол) получают облучением эргостерина ультрафиолетовыми лучами. Витамин Од образуется при действии света на 7-дегидрохолестерин. Вероятный механизм действия витамина О заключается в активации щелочной фосфатазы, что способствует гидролизу органических фосфатов и образованию фосфат-ионов, необходимых для формирования зубов и костей. [c.303]

    Гораздо ближе физико-химические свойства иона магния и иона марганца Мп +. Вследствие этого последний часто выступает синергистом иона Mg +. Например, оба эти иона активируют такие ферменты, как различные фосфатазы и др. Предполагается, что активация фермента лейцинаминопептидазы ионами Mg°" и происходит. вследствие образования [c.245]

    Активационный процесс может быть обращен, причем в этом обращении участвуют фосфатазы [2449]. Действие этих фосфатаз также находится под гормональным контролем, и равновесие между активацией и инактивацией ферментов точно сбалансировано. Киназа фосфорилазы — важный компонент системы, через который может осуществляться контроль, — представляет собой сложный фермент, состоящий из трех типов разных субъединиц. Две из них могут быть фосфорилированы при фосфорилировании р-субъединицы фермент активируется, но затем, при фосфорилировании а-субъединицы, может начаться процесс инактивации каскада при этом ip-субъединица становится более подверженной действию фосфатазы [816]. [c.124]


    Активация фосфатазы и протеолитических ферментов [c.181]

    Активация глюкоэо-6-фосфатазы детергентами. Процедура активации фермента в мембранных препаратах проводится прй 0°С под действием тритона Х-100 или дезоксихолата натрия. К 0,9 мл суспензии микросом (примерно 20 мг белка) добавляют 0,1 мл детергента до необходимой концентрации. Через 10 мин инкубации при помешивании действие детергентов прекращают пятикратным разведением суспензии 0,25 М сахарозой. Обработку микросом детергентами проводят непосредственно перед началом экспериментов. [c.372]

    Исследуют влияние детергентов — тритона Х-100 и дезоксихолата натрия —на гидролазную активность глюкозо-6-фосфатазы. Для активации фермента используют детергенты в концентрациях 0,01— [c.373]

    Многие белки в противоположность приведенным выше примерам связывают ионы металлов либо временно, либо в течение всего времени их существования в организме. Ранее уже упоминался пример временного связывания Са + в связи с протеолитической активацией протромбина и других компонентов системы свертывания крови (см. разд. 24.2.1.2). Иной случай представляют щелочные фосфатазы и фосфокиназы, где, по-видимому, для экранирования отрицательных зарядов фосфатной группы для облегчения атаки атома фосфора нуклеофилом требуется ион двухвалентного металла типа Mg + или Zn +. Более постоянное связывание ионов металлов белками может служить для выполнения одной из указанных ниже целей. Ионы Са + предохраняют трипсин от автолиза. Конкавалин А (см. ниже) не связывает производных глюкозы до тех пор, пока не свяжет предварительно один ион Са + и один ион Мг 2+ на субъединицу. В данном случае катионы, по-видимому, осуществляют подгонку конформации молекулы, образуя центр связывания глюкозы. Ионы металлов принимают также участие в формировании активных центров ферментов. По- [c.561]

    Кофермент А принимает участие в биологической активации и переносе ацетильных групп. Структура кофермента (70) была установлена Липманом и сотр. [61] в результате проведения серии специфических ферментативных гидролизов. Так, обработка фосфатазой кишечника приводила к образованию аденозина, пантетеина и 3 моль фосфата. Положение фосфатных групп определяли после проведения более специфичных деградаций. Так, после обработки нуклеотидазой, специфически расщепляющей нуклеотид 3 -фосфа-ты, был получен дефосфокофермент А и 1 моль ортофосфата. Пирофосфатаза, с другой стороны, вызывала образование адено-зр.н-3, 5 -дифосфата (известное соединение) и пантетеин-4 -фосфата. Положение фосфатной группы в последнем соединении было установлено путем его сравнения с синтетическим образцом известной структуры. [c.610]

    Исходный витамин D3 является регулятором образования гидроксилиро-ванной формы 25-(ОН) D3, ингибируя активность фермента 1-а-гидроксила-зы. Как уже было отмечено, биологические функции витамина D в основном связаны с действием его метаболитов. Физиологические концентрации кальция в крови поддерживаются системой, составной частью которой являются гидроксилированные формы D3. Идентифицирован механизм активации щелочной фосфатазы и кальций-зависимой АТФ-азы посредством метаболита витамина D3, а именно 1,25-(ОН)2 D3. Этот метаболит, локализованный в ядрах, принимает участие в регуляции генной активности. Гидроксилированные формы витамина D3 способствуют минерализации тканей, а также нормальному функционированию паращитовидных желез. [c.99]

    Хроническое отравление. В желудок крысам в течение 6 мес вводили хлорит Н. в дозах 0,01, 0,1 и 1,0 мг/кг. При воздействии вешества в дозе 1,0 мг/кг выявлены повышение щелочной фосфатазы и фазовые изменения активности ацетилхолинэстеразы крови, нарушение экскреторной функции печени. В крови также установлены снижение количества SH-rpynn, подавление бактерицидной активности сыворотки, снижение фагоцитарной активности нейтрофилов. Снижение количества общих и свободных SH-rpynn в гомогенатах печени, содержания аскорбиновой кислоты в надпочечниках при отсутствии гипертрофии последних, уменьшение времени активного движения сперматозоидов. Патоморфологически — дистрофия печени, гиперплазия перибронхиальной лимфоидной ткани, очаговая дистрофия миокарда, зернистая дистрофия извитых канальцев почек, гипертрофия и гиперплазия ретикулярных клеток селезенки, активация эндотелия мозговых сосудов. При введении дозы 0,01 мг/кг никаких изменений не выявлено. [c.40]

    В МОНОТОННОМ и интермиттирующем режиме в течение 1 мес. при одинаковой средневзвешенной концентрации 210 мг/м вызывала изменения функции печени, почек, надпочечников, нервной системы, лимфоидной ткани, которые были более выражены в случае прерывистого воздействия. Иные данные получены при непрерывной ингаляции (500 мг/м ) в течение 10 сут и интермиттирующем действии в течение 40 дней. Скорость развития и выраженность интоксикации по критериям активности щелочной фосфатазы, холинэстеразы, АлАТ, АсАТ, содержанию уробилина, Р-липопротеидов, тиоловых групп в сыворотке крови и выведению гиппуровой кислоты с мочой была в 4—5 раз выше при непрерывном воздействии яда. Однако по критерию полиплоидизации гепатоцитов разница между группами отсутствовала. Развитие полиплоидизации гепатоцитов зависело не столько от режима затравки, сколько от суммарной дозы Ч. У., полученной крысами за время опыта. У крыс, подвергавшихся воздействию Ч. У. в концентрации 20 мг/м в течение 6 мес., на 2, 4, 12 день опыта отмечено повышение содержания катехоламинов, ускорение превращения ДОФА в дофамин, активация симпато-адреналовой системы. Кролики при ингаляции 8600 мг/м 8 ч в день гибли после 1—3 затравок, при 4600 мг/м погибла лишь часть животных, при 63 мг/м по 7 ч в день в течение 6 мес. не было зарегистрировано признаков интоксикации. У кроликов, которые 6 мес. по 2 ч ежедневно вдыхали 400 мг/м Ч. У., в начальной стадии хронической интоксикации наряду с жировой инфильтрацией печени и лейкоцитозом обнаруживались резкое угнетение агглютининообразования, изменения активности холинэстеразы и уровня ацетилхолина (Чиркова). Морские свинки переносят без существенных изменений ингаляцию Ч. У. в концентрации 32 мг/м в течение 6 мес. по 7 ч в день. У обезьян, подвергавшихся воздействию Ч. У. в концентрациях 300 и 1250 мг/м по 8 ч в день 5 раз в неделю в течение 1,5 мес., отмечены слабые признаки жировой инфильтрации печени. При действии большей концентрации обнаружены явные дегенеративные изменения в зрительном и седалищном нервах. Ежедневное в течение 6 мес. 7-ч вдыхание Ч. У. в концентрации 160 мг/м переносилось без проявления токсического действия [4, с. 201]. [c.344]


    Ферменты из печени и скелетных мышц млекопитающих хорошо изучены. Фосфорилаза мышц представляет собой тетрамер, состоящий из четырех идентичных субъединиц. Каждая такая субъединица содерн ит один остаток серина, связанный сложноэфирной связью с ортофосфатом, а также одну молекулу пиридоксальфосфата (и тот и другой компонент имеют существенное значение для ферментативной активности). Эта активная форма фосфорилазы называется фосфорилазой а. Когда фосфат фосфосери-нов отщепляется под действием специфичного фермента, называемого фосфатазой фосфорилазы, фосфорилаза а распадается на димерные молекулы. Димер называется фосфорилазой Ъ. В этой форме фермент неактивен в условиях, в которых обьгано действует фосфорилаза а. Его активность можно, правда, частично восстановить добавлением 5 -АМФ, но этот эффект не имеет отношения к физиологическому механизму активации фосфорилазы Ь, т. е. к превращению ее в фосфорилазу а. Физиологический механизм активации состоит в фосфорилировании фосфорилазы Ъ четырьмя молекулами АТФ в присутствии специфичного фермента — киназы фосфорилазы. Этот фермент в свою очередь существует как в активной, так и в неактивной [c.284]

    Увеличение концентрации молочной кислоты приводит к сдвигу pH, иногда значительному (до 1—2 единиц). Кислая реакция является характерным признаком паранекротического состояния и обусловливает ряд свойств поврежденной прото- плазмы. С нею, в частности, связаны смена гранулярного отложения витальных красителей диффузной окраской, активация гидролитических ферментов, оптимум действия которых расположен в кислой зоне (кислая фосфатаза, амилаза и др.), нарушение структуры митохондрий, изменение проницаемости мембран и др. [c.19]

    Дальнейшие пути воздействия инсулина на обмен веществ пока не известны Предполагают, что инсулин оказывает свое характерное действие в основном путем регуляции генной активности, ведущей к образованию ферментов, вызывающих определенные метаболические изменения. В результате инсулин существенно влияет ва несколько звеньев обмена веществ. Он способствует использованию глюкозы тканями, фосфорилированию ее с участием фермента глюкокиназы, благодаря чему уровень глюкозы в крови снижается. Наряду с агим он тормозит активность фермента глюко-зо-6-фосфатазы, защищая гексозофосфаты от дефосфорилирования. Повышение концентрации глюкозо-6-фосфата создает условия для активации гликолиза, апотоми-ческого цикла, а также биосинтеза полисахаридов. Инсулин активирует биосинтез фермента гликогенсинтетазы в печени, что также ускоряет биосинтез гликогена. [c.276]

    Д. Влияние на метаболизм липидов. Липогенное действие инсулина уже рассматривалось в разделе, посвященном его влиянию на утилизацию глюкозы. Кроме того, инсулин является мощным ингибитором липолиза в печени и жировой ткани, оказывая, таким образом, непрямое анаболическое действие. Частично это может быть следствием способности инсулина снижать содержание сАМР (уровень которого в тканях повышается под действием липолити-ческих гормонов глюкагона и адреналина), а также способности инсулина ингибировать активность гормон-чувствительной липазы. В основе такого ингибирования лежит, по-видимому, активация фосфатазы, которая дефосфорилирует и тем самым инактивирует липазу или сАМР-зависимую протеинкиназу. В результате инсулин снижает содержание жирных кислот в крови. Это в свою очередь вносит вклад в действие инсулина на углеводный обмен, поскольку жирные кислоты подавляют гликолиз на нескольких этапах и стимулируют глюконеогенез. Данный пример показывает, что при обсуждении регуляции метаболизма нельзя учитывать действие лишь какого-либо одного гормона или метаболита. Регуляция—сложный процесс, в котором превращения по определенному метаболическому пути пред- [c.257]

    Обмен углеводов. Инсулин стимулирует гликолиз, повышая активность ключевых ферментов глюкокиназы, фосфофруктокиназы и пируваткиназы. В печени он снижает активность глюкозо-6-фос-фатазы. Эти процессы и стимуляция трансмембранного транспорта глюкозы обеспечивают поток глюкозы из крови в клетки. Инсулин стимулирует синтез гликогена за счет активации гликогенсинтазы (дефосфорилирование фермента в форму / — активную) этот процесс сопряжен с активацией фосфодиэстеразы и уменьшением внутриклеточной концентрации цАМФ, а также активацией фосфатазы гликогенсинтетазы. Действие инсулина на транспорт глюкозы, гликолиз, гликогеногенез продолжается секунды-минуты и включает фосфорилирование-дефосфорилирование ферментов. Длительное действие на уровень глюкозы в плазме зависит от ингибирования инсулином глюконеогенеза в печени гормон тормозит синтез ключевого фермента — фосфоенолпируваткарбоксикиназы (путем селективного контроля транскрипции гена, кодирующего мРНК этого фермента). Инсулин — единственный гормон, снижающий содержание глюкозы в крови. [c.391]

    Почки — типично стабильный орган. Обычно поражение почек наблюдается при общем облучении животных в дозах в несколько десятков грэй. Почечные изменения проявляются в виде токсической нефропатии с геморрагическими признаками. На высоте заболевания наблюдается сочетание поражения сосудов с различной степенью нарушения кровообращения и изменений канальцевой системы почек. Некоторые авторы отмечают возможное влияние нарушенных функций почек на развитие лучевой болезни. Так, Л. Гемпельман, Г. Лиско и Д. Гофман, описывая острый лучевой синдром у людей в результате аварии в Лос-Аламосской лаборатории, отмечают, что у одного больного, погибшего па 9-е сутки, наблюдался инфаркт почки, а у другого больного, погибшего на 24-е сутки, были обнаружены дегенеративные изменения почечных канальцев, явившиеся одной из причин терминальной анурии и задержки азота. В ряде других работ отмечается, что при остром лучевом поражении происходит нарушение проницаемости почечных клеток, появляется белок и отдельные клетки в просвете капсул клубочков, наблюдаются кровоизлияния, жировая инфильтрация и некроз эпителия канальцев. Незначительное увеличение веса почек в первые сутки острой лучевой болезни связано с повышенным притоком воды в ткань. Биохимические изменения в почках такл е проявляются при высоких дозах радиации наблюдается возрастание активности щелочной и кислой фосфатаз, аминотрансферазы снижение активности каталазы, эстеразы, происходят фазовые изменения (подавление с последующей активацией) синтеза белков, активности пептидаз, содержания аминокислот, которые выделяются с мочой. О нарушении функции почек свидетельствует также резкое снижение содержания гиппуровой кислоты в моче, наступающее вслед за кратковременным увеличением ее концентрации в ранние сроки после облучения в дозах, превышающих 10 Гр. Наблюдаемое повышен- [c.200]

    I находится под контролем двух термостабильных белков-ингибиторов. Ингибитор 1 фосфорилируется сАМР-зависимой протеинкиназой ингибитор 2, являющийся, по-видимому, субъединицей неактивной фосфатазы, также подвергается фосфорилированию—предположительно киназой-3 гликогенсинта-зы. Фосфорилирование обоих ингибиторов ведет к активации фосфатазы. Действие ряда фосфатаз направлено на некоторые специфические остатки так, существуют фосфатазы, отщепляющие фосфат от фосфорилированных остатков тирозина. [c.166]

    Синтез гликогена. Г люкокортикоиды увеличивают запасы гликогена в печени как голодных, так и сытых животных (на этой основе был разработан метод определения эффективности глтококортикоид-ных гормонов). Это осуществляется посредством превращения неактивной формы гликогенсинтазы в активную ( Ь в а ), вероятно, путем активации фосфатазы, которая способствует этому превращению. [c.214]

    В клетках скелетных мышц одна и та же фосфопротеинфосфатаза дефосфорилирует все ключевые ферменты метаболизма гликогена, регулируемые сАМР (киназу фосфорилазы, гликогенфосфорилазу и гликогенсинтазу рис. 13-29) ее каталитический эффект противодействует стимулируемому сАМР присоединению фосфата к белкам. Однако сАМР-зависимая протеинкиназа в активном состоянии фосфорилирует и тем самым активирует также специальный белок-ингибитор фосфатазы. Этот активированный белок-ин-гибитор связывается с фосфопротеинфосфатазой и инактивирует ее (рис. 13-30). Активация киназы фосфорилазы при одновременном подавлении фосфопротеинфосфатазы приводит к значительно более сильному и быстрому воздействию повышенного уровня сАМР на синтез и распад гликогена, чем если бы сАМР влиял лишь на один из этих ферментов. [c.273]

    В случае индукции и репрессии исследователь имеет дело с так называемой негативной регуляцией выражения генов. Существует также механизм позитивной регуляции — активация действия генов, которая осуществляется с помощью аллостери-ческих регуляторных белков. Наиболее известные и хорошо изученные примеры такого рода регуляции — это регуляция катаболизма арабинозы и синтеза щелочной фосфатазы у Е. соИ. [c.19]

    Протеинфосфатаза-1 (ПрФ-1) является не только главной фосфатазой, которая превращает фосфорилазу а в фосфорилазу Ь, но также главным ферментом, который дефосфорилирует р-субъединицу киназы фосфорилазы и гликогенсинтазу [36]. ПрФ-1 катализирует, следовательно, все реакции дефосфорил ирования, которые приводят к ингибированию гликогенолиза и активации синтеза гликогена (рис. 4.11). ПрФ-1 эф- [c.79]

    Установлено, что иа целлюлозных элементах оболочки некоторых клеток в состоянии адсорбции находятся биокатализаторы процессов обмена инвертаза, фосфатаза, аскорбиноксида-за, что свидетельствует о возможном участии клеточной оболочки в переносе веществ. Доказано также, что с помощью АТФ усиливается активация аминокислот. Это необходимо для включения их в протеины. [c.100]


Смотреть страницы где упоминается термин Фосфатазы активация: [c.622]    [c.634]    [c.470]    [c.62]    [c.149]    [c.46]    [c.640]    [c.47]    [c.81]    [c.13]    [c.415]    [c.372]    [c.382]    [c.60]    [c.79]    [c.110]    [c.261]    [c.261]    [c.179]    [c.84]    [c.89]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.636 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфатазы

Фосфатный перенос и его активация ионами металлов щелочная фосфатаза. Т. Г. Спиро (перевод А. А. Байкова)



© 2024 chem21.info Реклама на сайте