Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уровни генетического анализа

    Генетический анализ на уровне количественного фенотипа-биометрический уровень [c.238]

    В последние 20 лет были достигнуты большие успехи в понимании того, каким путем генетическая информация через матричную РНК воплощается в молекулу белка кроме того, высокий уровень развития получили представления об основах регуляции экспрессии генов в прокариотических клетках. К сожалению, до недавнего времени все важнейшие сведения о молекулярных механизмах регуляции ограничивались данными, полученными при изучении прокариотических и простейших эукариотических организмов. Это объясняется тем, что использованные методы генетического анализа эффективны лишь в применении к наиболее примитивным организмам. Последние достижения генной инженерии позволили начать изучение сложнейших механизмов регуляции экспрессии генов у млекопитающих. В этой главе мы сначала обсудим то, что характерно для прокариотических систем. При этом мы не будем описывать генетические эксперименты, а сделаем акцент на том, что может быть названо физиологией экспрессии генов. Однако нужно подчеркнуть, что почти все важнейшие выводы основаны на результатах генетических исследований. [c.110]


    Необходимо обратить внимание еще на один аспект анализа популяционно-генетических проблем, связанный с эволюционно-генетическим анализом популяций. Известно, что в современной биологии есть одна область, теоретически наименее понятная,— область наследственного осуществления (термин Б. Л. Астау-рова), путь от гена к фену , область биологии развития в широком смысле слова. Р. Левонтин делает шаг вперед в понимании того, что происходит на этом загадочном уровне, говоря об особенностях строения генома, о его функции и развитии в процессе эволюции. Это само по себе резко расширяет сферу действия книги, делая ее важной и для прогресса теоретической биологии развития. Во многих ее разделах генетика развития (феногенетика) смыкается с популяционной генетикой. Уверен, что популяционные подходы к проблемам генетики развития этим не исчерпываются уже явно наметившаяся область фене-тпческих исследований (посредством выделения и анализа дискретных признаков фенотипа — фенов, которые служат нризна-ками-маркерами генотипического состава популяции) расширяет сегодня это наступление на уровень наследственного осуществления со стороны популяционной биологии. Можно констатировать, что направление исследований достаточно ясно и — как показал автор книги — работы тут непочатый край. [c.8]

    Новые гены появляются в популяции главным образом в результате мутаций. Именно мутации поддерживают и увеличивают уровень генетической изменчивости, создавая тем самым еще один фактор, ограничивающий силу естественного отбора. Мутация—это ошибка в репликации гена во время мейоза. Ее наличие может привести к появлению нового фенотипа (т. е. варианта), который будет конкурировать с уже имеющимися в генофонде. Хотя существуют и другие источники новаций (например, генный поток между популяциями, рекомбинации, гетерозиготность), без мутаций отбор мог бы лишь поддерживать имеющуюся структуру или форму или, если она становилась нежизнеспособной, приводил бы к вымиранию популяции. Эволюционный анализ должен поэтому учитывать скорость и природу мутаций или, другими словами, источник наследуемых изменений, составляющих основу естественного отбора, положение имеет важные последствия. Одно из них состоит в том, что, хотя процесс мутирования носит случайный характер (здесь имеются в виду генные ошибки в процессе репликации), форма мутации таковой не является это означает, что особенности фенотипа. [c.74]

    Анализ сегрегационных отношений в их непосредственном выражении возможен в случае качественно различимых фенотипов (разд. 3.6.1.3), поскольку в этом случае простой менделевский тип наследования можно предположить и обосновать четко распознаваемыми фенотипами. Однако для многих признаков человека такой анализ еще невозможен. Их наследование необходимо моделировать с помощью биометрического анализа количественных признаков (разд. 3.6.1.4). К ним относятся такие нормальные признаки, как рост и 10, а также физиологические и биохимические характеристики, такие, как уровень холестерина в сыворотке. В эту же категорию признаков включают большинство широко распространенных болезней. Некоторые подходы к анализу количественных признаков описаны в разд. 3.6.1. Было дано обоснование концепции наследуемости и предложены стратегии пошагового анализа в соответствии с моделью мультифакториального наследования с пороговым проявлением или без такового. Среди этих стратегий мы обсуждали поиск фенотипических подклассов, а также анализ физиологических маркеров или ассоциаций с различными системами генетического полиморфизма. [c.202]


    Для идентификации в новых продуктах и исходном сырье отличных от аналогов признаков, влияющих на уровень безопасности и питательную ценность пищевых продуктов, тщательному анализу подвергается информация, касающаяся характеристик исходного организма, от которого взят ген, предназначенный для трансгеноза, а также характера генетической модификации. Далее проводят сравнительный анализ генетически модифицированного организма и исходного (немодифицированного) организма. Для этого сопоставляют агрономические показатели, продукты встроенных генов, со- [c.67]

    Эффекты кровного родства и уровень генетического анализа. Чем ближе находится объект анализа к действию гена, тем лучшие результаты дает популяционно-генети-ческое исследование. Одна из причин эффективности изучения действия естественного отбора на варианты гемоглобина их исследование непосредственно на уровне действия гена. Это позволило провести точный анализ механизма отбора. [c.361]

    Современная генетика разработала такие методы генетического анализа, которые позволили расшифровать биологические явления наследст венности и изменчивости до уровня молекул и атомов, г. е. тех категорий, которыми оперируют физика и химия. Решаюш,ую роль в этом сыгра ли микроорганизмы — грибы, бактерии и фаги. Не может бь(ть сомнений в том, что такой молекулярный уровень познания генетических эффектов стал реальностью лишь после того, как был установлен химический носитель наследственности — молекула дезоксирибонуклеиновой кислоты. Многие считают, что ведущую роль в становлении молекулярной генетики сыграло широкое использование современных физических и химических методов. Слов нет, физика и химия сыграли и продолжают играть существенную роль в исследованиях сложных механизмов и взаимосвязи генетического аппарата с процессами биосинтеза, протекающими в клетке. Однако принципиальное значение для развития молекулярно-генетических концепций имело резкое повышение разрешающей способности генетического анализа, связанное с использованием микроорганизмов. Вот почему было бы правильно говорить, что развитие молекулярно-генетических концепций стало возможным благодаря развитию генетики микроорганизмов с - у [c.5]

    Объясняющая мощь этой теории еще не исчерпана. Возвращаясь к нашей классификации генетического анализа (т. е. на уровне ДНК-генный уровень, на уровне генного продукта-биохимический уровень, на качественном фенотипическом уровне, на уровне количественного фенотипа-биометрический уровень), можно сказать, что гальтоновский биометрический подход дает ответы на уровне, дальше всего отстоящем от генного действия. Другими словами, исследования с помощью методов биометрической генетики руководствуются теорией черного ящика . Две внешние наблюдаемые переменные (измерения признака у родителей и детей или других групп родственников) сравниваются друг с другом, но промежуточная биохимическая переменная неизвестна и остается в черном ящике (рис. 3.57). [c.247]

    Наследственные болезни с простым моногенным наследованием служат превосходными примерами успешного применения концепции моноказуальной болезни. Используя в качестве примеров мутации гемоглобиновых генов, можно показать, как генетический анализ, основанный на менделевской парадигме, не только позво-.лил идентифицировать причины болезни, но и подготовил почву для выяснения механизмов, вследствие которых конкретные мутации вызывают нарушение функции, т.е. болезнь (разд. 4.3). Заслуживает внимания тот факт, что тяжесть моногенной болезни определяется взаимодействием с другими генами (и, возможно, со средой). Хорошо исследованным примером может служить серповидноклеточная анемия. Высокий уровень фетального гемоглобина НЬР способствует более мягким клиническим проявлениям этого заболевания, и. [c.293]

    Этот анализ является более грубым, чем генетический анализ у бактерий, но в настоящее время позволяет без труда локализовать отдельные гены в хромосомах. Традиционно такие исследования проводятся путем анализа потомков родителей,, обладающих теми или иными фенотипическими характеристиками, но этот анализ был переведен на уровень биохимических признаков, после того как было показано, что в определенных условиях две клетки могут сливаться in vitro, образуя гетерока-рион, т. е. одну клетку, содержащую два различных ядра. Небольшая часть таких клеток способна неограниченно размножаться. Первое митотическое деление после слияния приводит к появлению дочерних клеток с обоими наборами хромосом в одном ядре. Очень часто в ходе последующих делений вследствие [c.189]

    Второй период (1911—1953 гг.) связан с установлением материальных основ наследственности. Еще в первое десятилетие развития генетики (1902—1907 гг.) Т. Бовери, У. Сэттон и Э. Вильсон обосновали хромосомную теорию наследственности. Было выяснено, что между поведением наследственных факторов и хромосом в процессах клеточного деления (митоз) и образованием половых клеток (мейоз), передающихся следующим поколениям, существует определенная связь. Для изучения явлений наследственности в это время стали пользоваться цитологическими методами. Произошло объединение метода генетического анализа с цитологическим методом. Так в генетике возникло цитогенетическое направление. Было установлено, что наследственные факторы находятся в клетке. Изучение наследственности поднялось на более высокий уровень. [c.6]


    Челночные плазмиды на основе генетических элементов EBV могут быть использованы для клонирования и экспрессии генов в культурах клеток человека в целях пол5 ения белковых продуктов, максимально соответствующих природным белкам человека. Они позволяют также исследовать влияние разных культур клеток на уровень экспрессии клонированных генов и природу продуцируемых ими полипептидов (конформацию, посттрансляционную модификацию, специфический транспорт и др.). Мутагенез генов и экспрессия этих измененных вариантов в составе EBV-векторов позволяет проводить тонкий молекулярно-генетический анализ их функционирования. [c.390]

    Примером генетически обусловленного заболевания может быть и диабет, но механизм наследования и молекулярная основа его остаются неясными. У пациентов группы 1, страдающих юношеским диабетом, наблюдается полная или почти полная гибель -клеток островков Лангерганса, и инсулин у них не образуется. Такая разновидность диабета чаще всего встречаете у гаплотипов Dr3 и Dr4 HLA. В группе 2 (диабет взрослых) уровень инсулина в крови больных близок к норме или повышен аномалии у них иные, и среди них— нечувствительность рецепторов к инсулину. Они и приводят к недостатку инсулина.. У больных диабетом группы 2 взаимосвязи с определенными типами HLA не выявлено. Ротвейн и др. (Rotwein et al., 1981) использовали метод RFLP для анализа ДНК 35 здоровых людей, 17 больных диабетом из группы 1 и 35 — из группы 2.. У 26% здоровых людей в последовательности ДНК, прилегающей к 5 -концу гена инсулина, были обнаружены вставки длиной 1,5—3,4 кЬр. Такие же вставки присутствуют и в ДНК 35% больных группы 1 и 66% — группы 2 (рис. 8,7). Была [c.344]

    Редко встречающиеся качественные отклонения от нормы. Эта категория охватывает большинство наследственных заболеваний. Нанример, индивид либо имеет нормальную пигментацию, либо утратил кожный пигмент (альбинизм). Если выражение признака можно оценить количественно, например измерить уровень метаболитов крови или мочи, то распределение фенотипических значений имеет две моды. Результаты подобного рода позволяют заподозрить наличие ферментативного дефекта и, возможно, даже идентифицировать соответствующий ген. Примерами могут служить повышенное выделение гомо-гентизиновой кислоты в моче больных ал-каптонурией (врожденная ошибка метаболизма по Гэрроду) или повышенное содержание фенилаланина в сыворотке крови больных фенилкетонурией (рис. 3.46). Эти признаки редкие, и когда их подвергают детальному анализу, клинически сходные заболевания с одинаковым типом наследования часто оказываются генетически гетерогенными. Каковы критерии гетерогенности  [c.232]

    Белковые маркеры. Полиморфные генетические системы, биохимически и патофизиологически связанные с болезнью, служат генетическим фоном , который повышает вероятность для определенных индивидов оказаться пораженными. Анализ таких полиморфизмов может привести к идентификации группы маркеров, которые вносят существенный вклад в подверженность заболеванию. При коронарном атеросклерозе исследовали много разных маркеров. Вклад большинства из них в этиологию невелик. У индивидов с группой крови А с большей вероятностью может образоваться в сердце тромб более высок у них и уровень холестерина. Минорные эффекты новышения уровня холестерина связаны с несекреторным геном, генами гап-тоглобина 2 и От -генами. Генетический [c.303]

    Выявление гетерозигот по ФКУ и гиперфенилаланинемии. Для заболеваний, связанных с нарушением метаболизма (в частности, ФКУ), выявление гетерозигот имеет не только теоретическое, но и практическое значение, поскольку может быть использовано для генетических рекомендаций близким родственникам, например сибсам, родители которых страдали ФКУ. Сибсы, не имеющие признаков заболевания, с вероятностью 2/3 являются гетерозиготами. Идеальный метод выявления гетерозигот-прямой анализ фермента, для которого в настоящее время необходима биопсия печени. Другие методы основаны на целенаправленной перегрузке этого метаболического пути даже имеющейся у гетерозиготы активности фермента достаточно для переработки фенилаланина, в норме потребляемого с пищей, ее может не хватить для переработки избытка фенилаланина. Первую попытку тестирования гетерозигот с помощью избытка фенилаланина предпринял в 1967 г. Хсиа [1134] он вводил фенилаланин гетерозиготам и следил за его исчезновением в крови. Оказалось, что гетерозиготы довольно четко отличаются от нормальных индивидов. Позднее этот метод удалось усовершенствовать, измеряя в крови не только уровень фенилаланина, но и тирозина, который, как установлено, у гетерозигот несколько ниже. [c.53]

    Под действием ферментативной системы арилгидроксилазы полициклические углеводороды в организме человека могут преврашаться в более мошные канцерогены. Данные близнецового и семейного анализа показывают, что уровень этого фермента контролируется генетически. Точный механизм пока не установлен, хотя высказывались предположения, что у человека наследование моногенное [1160], как и у мышей в случае аналогичной ферментативной системы [1235]. Однако более вероятно, что это полигенный признак [1235 1026]. Так или иначе, люди с высокоактивной арилгидроксилазой, вероятно, более подвержены риску раковых заболеваний, индуцированных полициклическими углеводородами, например раку легких в результате курения [1161 1068]. [c.116]

    Долгое время считалось, что жизнь началась с одноклеточных организмов. Когда были открыты кристаллизующиеся вирусы, их рассматривали как переходные формы между кристаллами и живыми организмами. После того, как было установлено, что генетическим материалом служит ДНК, возникновение жизни перенесли на молекулярный уровень, а позднее, когда оказалось, что РНК проще и примитивнее ДНК, граница была сдвинута еще на один шаг в сторону неорганического мира. Но нет никаких оснований останавливаться на уровне РНК можно с тем же успехом рассматривать входящие в ее состав основания или даже атомы углерода как начало возникновения жизни, на что уже указывал физик Джинс (Jeans, 1933). Молекулярный анализ ведет к неизбежному выводу , что жизнь не имеет начала это процесс, внутренне присущий строению Вселенной (Lima-de-Faria, 1971, 1983). [c.37]

    Онтогенетические и нонуляционные исследования традиционно развиваются достаточно автономно. В то же время становится все более очевидным, что специальный анализ особи как онтогенеза необходим не только для корректной оценки популяций и их динамики во времени и пространстве, но и для понимания механизмов популяционных процессов. Стабильность развития выступает как наиболее общая характеристика состояния развивающегося организма. Главным показателем стабильности развития является уровень онтогенетического шума, обычно оцениваемого по флуктуирующей асимметрии. Высокая стабильность развития поддерживается на базе генетической коадаптации при оптимальных условиях развития. Согласованность изменения стабильности развития с другими показателями гомеостаза организма, включая генетические, физиологические, биохимические и иммунологические, свидетельствует о возможности говорить об общем состоянии организма при анализе стабильности развития. Наиболее перспективным представляется анализ стабильности развития как меры средового стресса. В практическом плане это открывает возможность для оценки и мониторинга здоровья среды, как в естественных условиях, так и при разных видах антропогенного воздействия. Рассматриваются перспективы дальнейшего развития подхода, связанного с исследованием стабильности развития. [c.1]


Смотреть страницы где упоминается термин Уровни генетического анализа: [c.26]    [c.35]    [c.185]    [c.244]    [c.259]    [c.9]    [c.82]    [c.38]    [c.69]    [c.102]    [c.82]    [c.8]    [c.44]   
Смотреть главы в:

Генетика человека Т.1 -> Уровни генетического анализа


Генетика человека Т.3 (1990) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Уровень анализа ХТС



© 2025 chem21.info Реклама на сайте