Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации природа

    Мутации и мутагенез. Исследования по изменчивости и селекции микроорганизмов в связи с развитием учения об антибиотиках стимулировало развитие работ по мутагенезу продуцентов витаминов, антибиотиков, ферментов и других биологически активных веществ. Микробиологи-селекционеры привлекали все известные методы изыскания новых форм микроорганизмов с повышенной биохимической активностью. Приспособление бактерий к разрушению нового синтетического органического соединения, не встречавшегося ранее в природе, требует от бактериальных клеток синтеза новых ферментов, т. е. изменения в генотипе. Генотипическая изменчивость наследственна. [c.110]


    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]

    Белки-мутанты можно привлекать к интерпретации структурных принципов. Все фиксированные мутации белков можно рассматривать как эксперименты природы, которые указывают нам, какие вариации мало влияют на стабильность белка и на динамику свертывания. С другой стороны, случайные и, по-видимому, нефиксирую-ш иеся мутации, как в аномальном гемоглобине, дают примеры вариаций, заметно понижающих стабильность белковой структуры. Оба типа мутаций можно использовать для совершенствования наших представлений о невалентных силах в белках. Для этой цели можно использовать процедуры минимизации энергии исходных и мутировавших полипептидных цепей на основе известных трехмерных структур [501]. Определенные таким образом разности энергий и геометрические отклонения можно сравнить с экспериментальными данными, полученными соответственно из термодинамических измерений [413, 417[ и рентгеноструктурных исследований с высоким разрешением. Аналогичные сопоставления можно провести с помощью моделирования свертывания цепи (разд. 8.6), которое позволяет получить дополнительную информацию о некоторых аспектах процесса свертывания. [c.207]


    Прокариоты, не содержащие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека. Формы, сходные с микоплазмами, были получены также опытным путем с помощью пенициллина, лизоцима и других факторов. Это так называемые -формы. В благоприятных условиях они обладают метаболической активностью и способностью к размножению. Предполагают, что микоплазмы произошли в результате мутации, нарушившей синтез веществ клеточной стенки, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные -формы. [c.36]

    У природы нет сознания, разума результаты мутаций не изучаются, борьба за повышение процента удачных мутаций не ведется. В технике есть возможность накопить опыт мутаций , исследовать его, выявить правила удачного мутирования , отражающие объективные законы развития. Это позволит вести мутации сознательно первый же выдвинутый вариант должен быть наилучшим. [c.55]

    Генетически обусловленные отклонения от нормальной структуры белков являются результатом мутаций. Большинство мутаций (независимо от того, возникли ли они в наших собственных клетках или в клетках наших предков) вредны. Но в то же время именно мутации создают внутривидовую индивидуальную изменчивость, что составляет основную движущую силу эволюции. Поэтому далее мы уделим особое внимание химической природе мутаций и их последствиям. [c.12]

    Яркие примеры мутированных белков человека — разнообразные гемоглобины, встречающиеся при заболеваниях крови. Изменения одного аминокислотного звена гемоглобина из 287 оказывается достаточно, чтобы вызвать тяжелейшие недуги вследствие нарушения функции этого белка. Химич. анализ белковой цени позволяет изучить материальную природу каждой конкретной мутации, т. е. понять, какая замена аминокислоты и в каком месте белковой молекулы вызвала нарушение функции. Зная генетич. код, можно легко выяснить, какое изменение претерпел соответствующий кодон. Чаще всего модифицируется лишь одно нуклеотидное звено ДНК. [c.194]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Таким образом, на молекулярном уровне наследственность означает воспроизведение синтеза определенных белков в последующих поколениях, запрограммированного в ДНК. Генные мутации сводятся к изменениям этой программы, т. е. к изменениям в структуре ДНК. Молекулярная природа мутаций, их соответствие законам физики были раскрыты Тимофеевым-Ресовским, Дельбрюком и Циммером (см. [17, 18]). Напротив, так называемые модификации, т. е. ненаследуемые изменения, определяются изменением структуры и функционирования белков (ферментов) в онтогенезе и не затрагивают генетическую программу, т. е. структуру ДНК. [c.485]

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]


    Но и этого мало. Оказалось, что в какой-то момент включается механизм неизвестной пока природы, благодаря которому возникают мутации, причем только в У-генах. Окружающие У-гены участки ДНК не меняются, а в У-генах [c.86]

    В заключительной главе мы увидим, что хромосомы и гены-это не застывшие, инертные структуры. Они могут подвергаться мутациям, иногда вызывающим серьезные нарушения в биологической функции белка, а иногда приводящим к появлению лучшего по своим функциональным качествам белка. Гены или наборы генов часто претерпевают обмен и рекомбинацию, образуя у потомства новые сочетания свойств. Более того, обмениваются и рекомбинируют части генов, что позволило природе создать удивительно эффективную иммунную систему, которая защищает позвоночных от микробов и помогает сохранить специфические особенности видов. [c.851]

    Тип мутаций Природа изменения в молекуле ДНК Типы мутирующих генов Влияние иа функцию гена Обратима ли мутация Супрессиру-ется ли мутация супрессорной тРНК [c.11]

    Значимость сайтов полиаденилирования при экспрессии генов выявляется при молекулярном анализе природы мутаций. Оказалось, что один из случаев нарушения синтеза р-глобина человека обусловлен мутацией, которая привела к образованию лишнего сайта полиаденилирования и нарушила созревание нормальной мРНК. [c.181]

    Самые ранние стадии развития дрозофилы, когда устанавливаются так называемые пространственные координаты эмбрионов, определяющие передний и задний или брюшной и спинной отделы, контролируются группой генов матери. Эти гены функционируют-на стадии образования яйца, и их продукты неравномерно распределяются по яйцеклетке. Предполагается, что материнские гены и нх продукты обеспечивают позиционную информацию, которая воспринимается генами, работающими после оплодотворения, в зиготе. Представление о наличии в цитоплазме яйца позиционной информации, определяющей направление развития групп эмбриональных клеток, подчеркивает роль взаимного влияния частей будущего эмбриона в развитии, но никак не вскрывает природы этих взаимодействий. Мутации в генах, определяющих структуру неоп-лодотворенного яйца, оказывают так называемый материнский эффект, нарушая развитие эмбриона. Например, структуры, свойственные данному району, заменяются иными, характерными для других районов развивающегося организма. Вероятно, такие материнские гены оказывают свое действие на стадии ядерного синцития, до образования клеток бластодермы, когда диффузия продуктов генов затрудняется в результате образования клеточной мембраны. Транскрипты таких генов локализуются в соответствующих отделах (например, переднем или заднем) неоплодотворенного яйца или развивающегося эмбриона. [c.214]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    Наиболее хорошо изучены супрессорные гены, подавляющие большое число различных мутаций, ведущих к преждевременной терминации цепи. Объяснить химическую природу этих генов удалось только частично при помощи опытов с переносом супрессорного геиа supF (su3) в ДНК бактериофага. Оказалось, что эта ДНК специфически 1ибридизуется с минорными видами тирозиновой тРН,К iтиооаинпмй [c.255]

    М.г.э. открыты в 40-х гг. 20 в. Б. Мак-Клинток на основании генетич. анализа нестабильных мутаций у кукурузы. Исследование их мол. природы начато в бО-х гг. в связи с обнаружением нового типа мутационньк изменений у бактерий (т. наз. вставочных мутаций) и идентификацией носителей этих мутаций. Структурно-функцион. исследования М, г. э. эукариот на мол. уровне ведутся с кон. 70-х гг. с использованием методов клонирования (получение наследственно однородных поколений особи или клетки путем бесполого размножения) и генетич. инженерии. [c.80]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Осн. доля всех М. в природе обусловлена генными М. Они вызывают разнообразные изменения признаков. Большинство из М. вредны для организмов (могут вызывать уродство и даже гибель). Очень редко возникают М., улучшающие св-ва организма. Эти М. дают осн. материал для есгесгв. и искусств, отбора, являясь необходимьпл ус ювием эволюции в природе н селекции полезных форм растений, животных и микроорганизмов. Частота спонтанных мутаций у каждого вида генетически обусловлена и поддерживается на оптим, уровне. [c.155]

    Различные мутационные замещения по-разному сказываются на строении белка. Из изложенного в 4.6 следует, что мутации, сильно изменяющие гидрофобиость аминокислотного остатка, должны сильнее сказываться на биологических свойствах белка, чем мутации, мало меняющие гидрофобиость. Первый тип мутаций более опасен для существования вида, чем второй. Можно думать, что генетический код построен природой таким образом, чтобы обеспечить преимущество мутациям первого типа. Нужно выявить эти особенности кода. [c.589]

    Аналогичные причины лежат в основе и других мутантных проявлений. Однако еше не найдены гены, ответственные за мутации и их функции. Мы уже упоминали отсутствие специфического белка мозжечка Р-400 у мышей Staggerer и Nervous (гл. 10). Еще один важный момент анализа поведения заключается в том, что модель такого типа позволяет анализировать генетические причины ненормального поведения при заболеваниях нервной системы человека. Мы уже описали несколько наследственных заболеваний нервной системы человека (например, болезни липидного накопления типа заболевания Тея-—Сакса (гл. 2)) и уже можем предсказать, что многие заболевания, причины которых еще не выяснены (шизофрения, депрессия и т. д.), имеют генетическую природу. [c.364]

    Прокариоты, не содержаш,ие клеточной стенки, обнаружены и в природе. Это группа микоплазм, сапрофитов и внутриклеточных паразитов растений, животных и человека. Отсутствие у них клеточной стенки повлекло за собой ряд морфологических, культуральных и цитологических особенностей. Функции клеточной стенки у микоплазм частично выполняет ЦПМ. Формы, сходные с микоплазмами, были получены также опытным путем с помош ью пенициллина, лизоцима и других факторов. Это так называемые Ь-формы. В благоприятных условиях они обладают метаболической активностью и способностью к размножению. Ь-формы могут быть генетически стабильными. Суш,ествует точка зрения, что миконлазмы произошли в результате мутации, нарушившей синтез веш еств клеточной стенки, от обычных бактериальных форм аналогично тому, как в экспериментальных условиях получают генетически стабильные Ь-формы. [c.19]

    Фактор устойчивости, или R-фактор (Resistan e — устойчивость). R-фактор имеет цитоплазматическую природу. Открыт Akiba в 1953 г. и детально изучен Ватанабе [22]. Относится к эписомам. Он никогда не возникает самопроизвольно в результате мутации, а передается от одних клеток к другим. Акридиновые красители элиминируют его из клеток. Удвоение R-фактора происходит в такт с удвоением хромосомы. В некоторых случаях он интегрирует с хромосомой и передается с хромосомными генами. По этим свойствам Р- и R-факторы весьма сходны. Однако если Р-фактор обусловливает генетическое разнообра- [c.87]

    Совершенно ясно, что энергия делокализации приобретает важное шачение как фактор стабильности, или выживаемости , биомолекул Гот факт, что биомолекулы содержат большое число сопряженных свя- ей, является весьма благоприятным обстоятельством, так как в этом злучае даже такой грубый метод, как ЛКАО МО в приближении Хюкке-П.Я, может значительно облегчить задачу установления электронной зтруктуры и в связи с этим определение центров биохимических процессов В ряде случаев подобные расчеты даже позволяют решать чрезвычайно сложные биохимические проблемы, такие, как природа мутаций, проблема канцерогенности, изучение противоопухолевой активности пуриновых антиметаболитов в химиотерапии рака и пр [c.61]

    Имеются два класса нуклеиновых кислот, различающихся мелсду собой по химической природе пентозы, входящей в состав их молекулы. Нуклеиновые кислоты, содержащие в своем составе -рибозу, называют рибонуклеиновыми кислотами, а нуклеиновые кислоты, углеводным компонентом которых является 2-дeзoк и-i/-pибoзa, носят название дезоксирибонуклеиновых кислот. Дезоксирибонуклеиновая кислота содержится в клеточных ядрах и является нуклеиновой кислотой, связанной с удвоением генов и мутациями. Рибонуклеиновая кислота содержится главным образом в цитоплазме. Она привлекала меньшее внимание исследователей, так как ей не приписывают особой роли в наследственности. Вирусы могут содержать нуклеиновую кислоту любого из этих типов [c.247]

    Основные научные работы посвящены механизму наследственности в бактериях и бактериофагах и биохимическим эффектам мутаций. Изучал (с 1954) природу взаимоотношений между профагом и генетическим материалом бактерий. Исследовал генетику ли-зогении. [c.187]

    Интересен вопрос и о физиологическом действии перекиси водорода на молекулярном уровне. Показано, что перекись водорода может вызвать мутации, и в ряде литературных источников [442] описываются условия и природа этого эффекта. Последний иногда считают радиомиметическим эффектом, причем он представляет интерес с точки зрения образования перекиси водорода в живых организмах прн действии ионизируют,их излучений (см. стр. 60). Механизм этого мутагегпюго действия точно еще не известен, а поэтому заслуживают внимания различные высказанные мнения и точки зрения. Процессы мутации находятся в близком родстве с карциногеиезом, и, как указывает Дженсен (см. в работе [443] стр. 159), необходимо различать возникновение опухоли и ее развитие факторы, имеющие значения для одного из этих явлений, могут ие оказывать влияния на другое. Мутагенное действие перекиси водорода изменяется также в зависимости от легкости доступа ее к клеточным ядрам (см. в работе [443] стр. 116). Процесс может зависеть и от возможного изменения содержания каталазы в разных частях клетки. Шнейдер (см. в работе [359] стр. 273) считает, что каталаза в клеточном ядре почти отсутствует и находится в растворимой форме в цитоплазме однако мнения по этому предположению расходятся [443]. Тем не менее установлено [444], что каталаза устойчива против рентгеновского облучения. Логическим выводом из того, что рентгеновские лучи и подавляют опухоли и вызывают образование перекиси водорода, была мысль, что перекись водорода может оказывать благоприятное влияние на лечение рака. Такого рода опыты проводились (см. в работе [443] стр. 149 [445]) и проводятся сейчас, но пока еще положительных результатов не получено. Возможно, что перекись, образующаяся при действии излучения, представляет органическую перекись или перекись водорода в форме аддитивного соединения, причем высказана мысль (см. в работе [443] стр. 149), что эти соединения не разлагаются каталазой. Большинство авторов в на- [c.358]

    Скачкообразное изменение гена под действием ионизирующего излучения имеет квантовую природу, начинается с образования неравновесных энергизованных состояний гена и сравнительно редко приводит к наследуемым изменениям (мутациям) в атомной структуре гена. [c.11]

    Генетики оказались перед выбором — либо не поверить данным Эвери, либо признать, что веществом наследственности оказался не белок, как принято было считать, а ДНК. Опровергнуть Эвери было трудно — в его работе просто-напросто не к чему было придраться. Но и от устоявшихся представлений о белковой природе гена отказаться ни за что не хотели. Опытам Эвери было дано следующее объяснение ДНК, конечно, никаких генов не содержит и содержать не может. Но она может вызывать мутации, т. е. изменять гены, которые, как им и положено, состоят из белка. Правда, ДНК оказалась весьма необычным мутагеном, вызывающим от опыта к опыту одни и те же мутации, в отличие от обычных мутагенов, которые вызывают мутации случайным образом, ненаправленно. Это не могло не заинтересовать генетиков, уже давно искавших способы направленного изменения наследственности. Так удалось спасти, казалось бы, уже испускавшую дух белковую теорию гена, но при этом генетики и все те, кто занимался проблемой химической (или физической) природы наследственности, вынуждены были, наконец, признать, что на ДНК следует обратить серьезное внимание. [c.18]

    Методом гибридологического анализа была установлена генетическая природа данных мутаций. Мутант К-3 представляет собой мо-ногенную мутацию. Мутанты К-Ю и К-202 — дигенные. При скрещивании мутантов с исходной формой в Рз наблюдалось для К-3 обычное менделевское расщепление на исходную форму и мутант в соотношении 3 1, а для К-Ю и К-202 — расщепление 9 3 3 1. [c.120]

    Как влияет изменение одного основания в мРНК на аминокислотную последовательность полипептида Очень важные доказательства, подтверждающие правильность расшифрованного генетического кода, были получены при изучении природы мутаций, приводящих к замене одного остатка в аминокислотной последовательности белка. Какая из перечисленных ниже замен одной аминокислоты на другую согласуется с генетическим кодом Какая из замен не может быть результатом изменения одного-единственного основания в мРНК Почему  [c.963]

    Мутации в реальной жизни индивидуального организма-события весьма редкие. Вероятность того, что в течение жизни одной клетки Е. oli произойдет мутация, составляет 10 Для клетки человека такая вероятность выше-порядка 10 эта величина была рассчитана, исходя из частоты встречаемости гемофи-лмм-генетической болезни, в основе которой лежит нарущение механизма свертывания крови, приводящее к длительным кровотечениям. Гемофилия была одним из первых наследственных заболеваний человека, природу которого удалось понять. Классический пример этого заболевания представляет собой гемофилия в семье английской королевы Виктории. Она была прослежена в трех поколениях ее потомков, принадлежащих к королевским семьям Англии, Пруссии, Испании, Греции и России. У человека наряду с молчащими , безвредными или благоприятными мутациями, не вызывающими осложнений, возможны мутации, приводящие к генетически наследуемым расстройствам, которые проявляются в нарушениях нормальных функций организма. К настоящему времени у человека найдены мутации примерно в 2500 различных генах многие из них либо ухудшают те или иные функции, либо приводят в конечном счете к летальному исходу. Остальные гены человека, подверженные мутациям, предстоит обнаружить. Очевидно, число выявленных наследственных заболеваний человека будет возрастать по мере появления методов, способных регистрировать последствия мутаций. Наследственные болезни ставят перед биохимией и медициной исключительно важную задачу по их распознаванию и лечению. [c.972]

    Представление о том, что и у микроорганизмов возможны скачкообразные изменения наследственных признаков-мутации,-утверждалось лишь с трудом. До разработки метода чистой культуры многие ученые (Нэгели, Цопф) думали, что у бактерий морфология и физиологические свойства чрезвьиайно изменчивы. Считалось, что большое число бактерий, встречающихся в природе, представляют собой разные стадии жизненного цикла небольшого количества видов (плеоморфизм). Возражая против этого на основании результатов, полученных с помощью усовершенствованных методов и чистых культур, другие ученые выступили в пользу теории мономорфизма, согласно которой бактерии можно различать и классифицировать, исходя из постоянства их морфологических и физиологических признаков. Необходимо было научиться различать и у бактерий генотип и фенотип. Генотипом называют совокупность наследственных задатков клетки ему противопоставляют фенотип-совокупность наблюдаемых признаков. Фенотипическое проявление одного и того же генотипа может быть различным в зависимости от условий среды. [c.439]

    В гл. 1П указывалось, что первичная структура некоторых полипептид-ных гормонов (в частности, вазопрессина и меланоцитстимулирующего гормона) у разных биологических видов не вполне одинакова. Такая же видовая специфичность наблюдается и у белков. Сэнгер и его сотрудники, работая с препаратами инсулина, выделенными от разных видов млекопитающих, во всех случаях обнаружили те или иные вариации либо в А-цепи (на участке, ограниченном дисульфидным мостиком), либо в В-цепи (на ее карбоксильном конце). В препаратах цитохрома с, выделенных от разных видов, также были обнаружены индивидуальные различия, определяющиеся природой аминокислот в ключевом пептидном сегменте. Помимо этих вариаций, обусловленных видовой специфичностью, встречаются также и различия в белках одного и того же вида, возникшие в результате мутаций. Большинство сведений о влиянии мутаций на структуру белка почерпнуто нами из прекрасных работ Ингрэма. Ингрэм и его сотрудники показали, что нормальный гемоглобин взрослого человека и гемоглобин больных таким наследственным заболеванием, как серповидноклеточная анемия, отличаются только тем, что в определенном положении р-цепи остаток глутаминовой кислоты в аномальном гемоглобине заменен валином. (Напомним, что молекула гемоглобина состоит из двух пар идентичных цепей а- и Р-цепей в гемоглобине взрослого человека или а- и у-цепей в гемоглобине плода.) [c.96]


Библиография для Мутации природа: [c.251]   
Смотреть страницы где упоминается термин Мутации природа: [c.249]    [c.253]    [c.154]    [c.281]    [c.442]    [c.468]    [c.7]    [c.21]    [c.209]    [c.991]   
Основы биологической химии (1970) -- [ c.490 , c.493 ]




ПОИСК







© 2025 chem21.info Реклама на сайте