Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Простая связь реакции нуклеофильного замещения

    В предыдущей главе (разд. Д) рассматривалась реакция замещения гидроксильным ионом иодид-иона из метилиодида. Можем ли мы подобным образом замещать метильную группу этана (СНз—СНз), разрывая при этом связь С—С и образуя СНзОН Нет, не можем. Этан устойчив в растворе щелочи и в нашем организме он тоже не может расщепляться путем простых реакций замещения. Аналогично этому длинные углеводородные цепи, входящие в состав жирных кислот, не могут быть расщеплены подобным путем в процессе метаболизма жирных кислот. Таким образом, реакции нуклеофильного замещения имеют место в тех случаях, когда замещение совершается легко, однако они не происходят в случаях, когда замещение сильно затруднено. К тому же не каждый анион или основание В может замещать другую группу. [c.92]


    В простейшем случае, если в молекулах вещества имеется три центра и при реакции разрывается только одна связь, то реакцию нуклеофильного замещения можно изобразить двумя схемами  [c.73]

    Многие свойства арилгалогенидов, такие, например, как инертность в реакциях нуклеофильного замещения, весьма сходны со свойствами винилгалогенидов. Попытки провести аналогичное сопоставление свойств винильных кислород- и азотсодержащих соединений и соответствующих ароматических кислород- и азотсодержащих соединений наталкиваются обычно на невозможность подобрать нужный для сравнения винильный аналог. Так, если простые виниловые эфиры и ряд третичных виниламинов (1, разд. 15-3) легкодоступны, виниловые спирты и первичные или вторичные виниламины в большинстве случаев неустойчивы и склонны к тауто-меризации с образованием связей С=0 и С=Н. (Интересное исклю- [c.260]

    Пиридин гораздо более слабое основание, чем обычные третичные амины (р/Г сл4), и имеет р/Г), около 8,8. В случае соединения гетероатома кратной связью с ненасыщенной системой неподеленные электроны этого атома направляются на орбиты, имеющие более -характер, чем в подобной же структуре, но с гетероатомом, связанным простыми связями. В результате эти электроны становятся менее доступными для образования связи с протонами. Пиридин широко используется как основной катализатор и растворитель при получении сложных эфиров и амидов, а также в других реакциях нуклеофильного замещения у ненасыщенного атома углерода. [c.500]

    Нуклеофильное замещение является простой реакцией замещения, в которой нуклеофильный агент (основание) приближается к атому углерода или фосфора с дефицитом электронов (электрофильный центр) и образует с ним связь, замещая при этом какой-либо другой атом, например О, N или 5. Замещаемый атом уходит вместе с неподеленной парой электронов и с любой другой присоединенной к нему химической группировкой, причем все это вместе называется уходящей группой. Обычно для завершения реакции необходимо, чтобы одновременно с замещением или после него к атому О, N или 5 уходящей группы присоединился протон, происходящий из кислотной группы фермента или воды. Заметим, что основание В (которое может нести отрицательный заряд или быть электронейтральным) часто образуется путем ферментативного удаления протона от сопряженной кислоты ВН. [c.91]

    Ускорение, наблюдаемое для реакции синтеза простых эфи-рюв по Вильямсону, вероятно, объясняется несколькими причинами [2]. Главная компонента энергетического барьера в реакциях бимолекулярного нуклеофильного замещения — удаление молекулы растворителя от нуклеофила, Десольватация нуклеофила. обеспечивает близкий подход нуклеофила к атому углерода алкилирующего агента, тем самым облегчая реакцию. Десольватация нуклеофил-аниона требует большой затраты энергии, особенно в протонных растворителях, которые могут образовывать водородные связи с отрицательно заряженным анионом. В связи с этим в реакции типа реакции Вильямсона обработку первичного алкилбромида или алкилиодида проводили алкоголятом натрия, растворенным в спирте.- В. условиях межфазного катали за анион переносится из водной фазы в неполярную органическую фазу в паре с большим липофильным [c.99]


    В первоначальном варианте метода соответствовал галоге-нид-иону, однако в качестве уходящей группы могут использоваться также сульфонаты, сульфаты или/карбоксилаты) При 0-алкили-ровании простых спиртов в качестве растворителя часто используется избыток спирта, однако для спиртов с большой молекулярной массой обычно необходим растворитель. Кипячение спирта с металлическим натрием или калием в высококипящем углеродном растворителе, например толуоле или ксилоле, служит популярным методом получения алкоксидов, предположительно в связи с тем, что расплавленный металл имеет чистую поверхность для реакции со спиртом, однако в этих растворителях алкоксиды обладают ограниченной растворимостью. Для солей щелочных металлов лучшими, по сравнению с углеводорода.ми, растворителями являются жидкий аммиак и простые эфиры, однако наиболее эффективными растворителями для нуклеофильного замещения, особенно в случае метил- или бензилгалогенидов, где отсутствует проблема катализируемой щелочью р-элиминации, служат такие ди-полярные апротонные растворители, как ДМФ и ДМСО. Эти последние растворители особенно полезны при легком образовании эфиров полиатомных спиртов, таких как полисахариды [94]. Для получения алкоксидов в качестве основания обычно используются щелочные металлы, амид натрия и гидрид натрия, причем последний становится все более популярным в связи с его доступностью в виде порошка. Полезным вариантом метода, в котором в качестве растворителя используется ДМСО, является реакция гидрида натрия с растворителем с образованием соответствующего карб-аниона, представляющего собой сильное основание [95]. Метод метилирования по Хеуорсу [96], заключающийся в обработке диметил-сульфатом и гидроксидом натрия в воде, оказался особенно ценным при развитии хи.мии углеводов, однако в дальнейшем не нашел широкого применения. Этот метод не дает удовлетворительных результатов при этерификации алифатических спиртов, однако может применяться для фенолов. Тот факт, что данный метод может использоваться для углеводов, вызван, по-видимому, их несколько большей кислотностью по сравнению с алифатическими спиртами. [c.318]

    Катализаторы межфазного переноса особенно широко используют в реакциях нуклеофильного замещения и присоединения, значительно в меньшей степенн — в реакциях элиминн-рованпя. Описаны отдельные примеры использования этих катализаторов в процессах изомеризации. Ниже последовательно рассмотрено применение межфазного катализа в нуклеофильных реакциях замещения с участием неорганических и органических анионов, в нуклеофильных реакциях присоединения органических анионов по кратным связям (включая последующие превраш,ения продуктов присоединения, например элиминирование и циклизацию), в реакциях присоединеиия дигалогенкарбенов по простым (внедрение) н кратным связям, в реакциях элимнпнрования и некоторых других превращениях. [c.50]

    РЕАКЦИИ РАСКРЫТИЯ ЦИКЛА. В отличие от обычных простых эфиров эпоксиды легко вступают в реакции нуклеофильного замещения, в результате которых разрывается связь углерод — кислород. В нейтральных или щелочных условиях всегда идет реакция типа 8м2, о чем свидетельствует как кинетика раскрытия цикла, так и стереоспецифичность процесса. Например, раскрытие кольца циклопентеноксида под действием метилат-пона дает только транс-2-метоксициклонентанол. [c.447]

    Влияние растворителей на реакции алифатического нуклеофильного замещения изучали Хьюз и Ингольд. Для этой цели они применили простую качественную модель сольватации, учитывающую только электростатические взаимодействия между ионами (или биполярными молекулами) и молекулами растворителя Как в начальном, так и в переходном состояниях [16, 44]. В за-аисимости от того, являются ли реагирующие частицы нейтральными, отрицательно или положительно заряженными, все реакции нуклеофильного замещения и элиминирования можно отнести к трем типам. Далее можно достаточно обоснованно предположить, что степень сольватации непосредственно связана с характером электрического заряда реагирующей час- гицы, а именно степень сольватации а) возрастает при повы-Щении величины заряда б) понижается при делокализации заряда в) при нейтрализации заряда снижается в еще большей степени. Отсюда следует, что общий эффект растворителя на реакции с участием нейтральных, положительно или отрицательно заряженных частиц можно суммировать следующим образом  [c.204]

    В ФПЕ лигнина делокализацкя положительного заряда дополнительно усиливается наличием в иара-положении к пропановой цепи электронодонорного заместителя - фенольного гидроксила свободного (ОН) или связанного (ОК), т.е. образованием системы карбкатион-оксоний (схема 12.27, а). Резонансные граничные структуры, в том числе и протонированного хинонметида, лишь стабилизируют образующийся карбкатион, и реакции присоединения нуклеофилов идут практически исключительно в а-положении. Вторая стадия реакции 3к1 заключается в атаке промежуточного карбкатиона нуклеофильными реагентами (см. схему 12.27, б). Реакции нуклеофильного замещения ароксильных или алкоксильных групп в структурах бензнлового эфира приводят к деструкции простой эфирной связи. Сольволиз лигнина, когда в роли нуклеофила выступает вода или органический растворитель (см. схему 12.27, в), по конечному результату (как и сольволиз полисахаридов) также представляет собой реакцию нуклеофильного замещения. [c.434]


    Свойства галогеноэфиров повторяют свойства как галогенопроизводных, так и простых эфиров. Связи С-О в них чрезвычайно устойчивы, тогда как С1, Вг, I весьма подвижны в реакциях нуклеофильного замещения, что [c.603]

    Практически оказывается небезразлично, какую из связей разъединять, если R и R разные. Встает вопрос какая из двух частиц - R или r - более устойчива в виде карбокатиона, а какая обеспечивает наибольшую стабильность алкоксидного иона.При необходимости синтезировать простые эфиры фенолов ясно,что ароматический радикал должен сохранить при себе атом кислорода, что соответствует участию в реакции феноляТ-аниона, а алкильная группа участвует в реакции в виде карбокатиона, эквивалентом которого является алкилгалогенид или алкилсульфат, (В противном сдучае пришлось бы иметь дело с арилгалогенидом, который, как известно, является малореакционноспособнш в реакциях нуклеофильного замещения.) [c.140]

    Рассмотрим далее атом фтора в качестве отщепляющейся группы в нуклеофильных реакциях. Несмотря на то что связь С — Р является термодинамически прочной, атом фтора, непосредственно связанный с 5 >2-гибридизованным углеродом двойной связи, чрезвычайно легко замещается нуклеофильными реагентами. Наиболее простой пример -сравнение реакций нуклеофильного замещения 4-нитрофторбензола и 4-хлорфторбензола метокси-анионом в метиловом спирте при 50°С первый субстрат реагирует в 312 раз быстрее второго. Такое ускорение реакции можно объяснить тем, что в результате отталкивания атомом фтора тг-электронов у замещенного фтором углерода (при наличии в сопряженной системе электроноакцепторных заместителей, в данном случае нитрогруппы, смещение электронов значительно усиливается) этот атом углерода приобретает положительный заряд и становится чувствительным к атаке нуклеофильными реагентами. С 2,4-динитро- [c.14]

    Эти реакции нельзя отнести точно к реакциям окислительного присоединения, но их тесная связь с ними очевидна. Они соответствуют реакции (107), за которой не следует реакция (108). Как и ожидалось, эти реакции представляют собой простые реакции нуклеофильного замещения, всегда происходящие с обращением конфигурации при алкильной группе [84, 95]. [c.451]

    В первой части доклада будут рассмотрены реакции производных кислот трехвалентного фосфора с предельными галогеннесодержащими органическими соединениями спиртами, их простыми и сложными эфирами, а-окисями реакции с гидронерекисными и перекисными соединениями реакции с карбоновыми и фосфорсодержащими кислотами, азот- и серусодержащими соединениями, представляющие собой реакции нуклеофильного замещения. Во второй части доклада рассмотрены реакции присоединения производных кислот трехвалентного фосфора к галогеннесодержащим органическим соединениям по кратным связям предельным и ненредельным альдегидам и кетонам, дикарбонильным соединениям, ненредельным карбоновым кислотам и их производным, непредельным углеводородам. [c.17]

    Значение кинетического подхода для изучения механизмов химических и биохимических реакций трудно переоценить. Часто простейшее кинетическое наблюдение открывает целую эпоху в исследовательской работе. Так, при изучении нуклеофильного замещения у атома углерода было обнаружено, что в зависимости от заместителей у реакционноспосо1бного атома углерода реакция может протекать по двум различным кинетическим законам —по первому порядку с лимитирующей стадией разрыва связи углерод — уходящая группа и но второму порядку. Дальнейшее развитие этих исследований позволило создать классификацию механизмов и идентифицировать группы реакций, протекающих по механизмам 5к, и SN2 изучить реакционную способность в зависимости от электронных свойств заместителей, построить шкалу влияния заместителей и тем самым найти корреляции между реакционной способностью и строением е реакциях нуклеофильного замещения, а также в некоторых других органических реакциях. [c.5]

    Как уже отмечалось, между углеродом и галогеном в галогеноал-килах существует поляризованная ковалентная связь, поэтому для этих соединений наиболее характерны реакции нуклеофильного замещения галогена. Такое положение дает возможность использовать галогеноалкилы как алкилирующие агенты и с их помощью вводить в различные органические соединения алкильные радикалы. Наиболее часто используются реакции замещения галогена в галогеноал-канах для получения соединений различных классов спиртов (стр. 162), простых эфиров (стр. 259), сложных эфиров (стр. 262), аминов (стр. 398), нитрилов (стр. 391). [c.454]

    Применение постулата Хэммонда в расши1 енной трактовке оказывается весьма плодотворным и позволяет сделать выводы об изменении структуры переходного состояния при варьировании параметров процесса. Наиболее просто применение постулата в случае реакций, при которых происходит изменение состояния одной авязя, либо в тех случаях, когда изменение состояния двус связей происходит строго синхронно. Примером реакций первого типа являются реакции нуклеофильного замещения, протекающие по механизму. [c.9]

    Одной из важнейших причин того, что постулат Хэммонда применю к реакциям электрофильного ароматического замещения в его простейшей форме, является то, что образование связи алектрофила с ядром и разрушение ароматической системы, по-видимому, происходит строго синхронно. Как мы увидим далее при рассмотрении реакций нуклеофильного замещения и отщепления в алифатическом ряду, отсутствие такой синхронности приводит к резкому усложнению кар- [c.19]

    В настоящем разделе рассматриваются следующие классы соединений простые эфиры типов ROR, ArOR и GH2 = HOR или СН s OR 1,2-эпоксиэтан алканолы и фенолы. Алканолы и диалкилэфиры являются изомерами, имеющими одну и ту же суммарную формулу Сп,Й2 +2, где п 2. Рассмотрение всех этих классов соединений ограничивается в настоящем разделе изложением свойств связи С — О, атома кислорода и влияния, оказываемого OR- или ОН-группой на реакционную способность углеводородного остатка, с которым она связана свойства О — Н-связи будут рассмотрены позднее. Охватываемый при этом материал излагается в следующей последовательности (А) реакции нуклеофильного замещения (Б) реакции нуклеофильного присоединения (В) реакции элиминирования (Г) реакции электрофильного присоединения и замещения. [c.331]

    Замещение групп на нуклеофилы уже рассматривалось при обсуждении химии галогенпроизводных, простых эфиров и алканолов, и реакции этих типов протекают как нуклеофильное взаимодействие с насыщенным атомом углерода (электронодефицитный характер этого атома обеспечивается наличием соседнего галогена, кислорода или протонированного кислорода) и разрывом связи С — галоген или С — О. (Вероятно, термин насыщенный — не самый лучший термин, если речь идет о электронодефицитном атоме углерода, но тем не менее им можно пользоваться, если считать, что он указывает на наличие четырех заместителей около этого атома.) Указанные реакции нуклеофильного замещения протекают достаточно легко (с препаративной точки зрения), но, конечно, их нельзя отнести к разряду бурно протекающих реакций и они подчас нуждаются в подхлестывании, С другой стороны, ряд реакций производных кислот протекает очень бурно и не требует нагревания. Действительно, в общем верно, что расщепление связи С — С1, С — О или С — Nb том случае, если этот атом углерода образует также двойную связь с кислородом, протекает гораздо легче, чем для насыщенных соединений. Подтверждением этого могут служить следующие примеры. [c.396]

    Изучение реакций нуклеофильного замещения эфиров и монооксисоеди-нений позволило установить важную роль протонирования атома кислорода эта стадия необходима также для легкой дегидратации алканолов. В то же время известен ряд реакций, для которых первоначальное протонирование не является необходимым, как, например, реакция металлоорганических соединений с простыми эфирами, и для таких случаев предполагается, что необходимые условия для нуклеофильной атаки обеспечиваются самой полярностью связи С — О. Из-за меньшей электроотрицательности сера вызывает поляризацию связи С — 8 в гораздо меньшей степени, чем кислород для связи С — О более того, как уже указывалось в гл. 3, сера является гораздо менее основной, чем кислород, и поэтому менее склонной к присоединению протона. Оба эти обстоятельства обусловливают меньшую склонность связи С — 8 к разрыву в реакциях нуклеофильного замещения по сравнению со связью С — (), и к расщеплению в условиях катализируемой кислотой реакции элиминирования. Короче говоря, можно сказать, что связь С — 8 оказывается более устойчивой , чем С — 0-связь в аналогичных соединениях. Подобная ббльшая устойчивость, конечно, относится лишь к реакциям с нуклеофилами и ее следует отличать от собственно стабильности или прочности связи как таковой. Последнее свойство обычно выражается через силовую постоянную связи или ее энергию диссоциации. [c.434]

    Бромистая фенилртуть выделяется при этой реакции в достаточно чистом виде и взаимодействием с бромоформом и грег-бутилатом калия в бензоле может быть снова превращена в исходное вещество. Реутов и Ловцова (1960), которые впервые описали эту реакцию, считали, что она протекает путем внедрения дпгалоидкарбена в связь ртуть—галоид. Однако исследования Зейферта (1962) показывают, что реакция бромистой фенилртути с хлороформом и грег-бутилатом калия иредстав-ляет собой просто нуклеофильное замещение бромидного иона трихлор-метильным анионом  [c.18]

    Фосфорная кислота является кислотой средней силы . В связи с этим, как указали Хадсон и Харпер [170], возникает вопрос, близки ли полные эфиры фосфорной кислоты по своим свойствам к эфирам сильных кислот (например, толуолсульфокислоты) или слабых кислот (например, карбоновых). На самом деле эти эфиры по свойствам напоминают оба указанных типа эфиров, так как проявляют заметного тенденцию к реакциям замещения у атома углерода но ча происходит нуклеофильное замещение у фосфора, в особенности гидроксильными и алкоксигруппами. Простейшие трифосфаты сравнительно устойчивы. Например, триметилфосфат 1 Й =СНз) гидролизуется в щелочной среде со скоростью реакции второго порядка при этом расщепляется связь Р — О и образуется диметилфосфат, анион которого очень устойчив к дальнейшему гидролизу. В слабокислой среде триметилфоа )ат медленно гидролизуется с разрывом связи С — О без кислотного катализа [49]. Как и ожидалось, фениловые эфиры гидролизуются в щелочной среде легче, чем алкиловые эфиры. Действительно, трифенилфосфат [c.80]

    Процесс гидролитической деструкции полисахаридов состоит из множества реакций гидролиза гликозидньк связей - обменных реакций между гликозидом и водой, протекающих по механизму нуклеофильного замещения SnI. Этот механизм - последовательность стадий, обратная процессу образования ацеталей из альдегидов и спиртов. При гидролизе гликозидной связи как ацеталя алкокснльная группа является плохо уходящей группой, что и вызывает необходимость ее предварительного протонирования с переводом в сопряженную кислоту. Легкость гидролиза гликозидной связи разбавленными кислотами в отличие от гидролиза простой эфирной связи обусловлена [c.287]

    Nu leo — по-гречески ядро , т. е. нуклеофильными названы вещества, обладающие сродством к атомному ядру. Простейшим атомным ядром является протон. Основания обладают сродством к протону — они протофильны и, следовательно, нуклеофильны. Применительно к реакциям между основаниями и кислотами или кислотоподобными веществами этот термин обоснован, но, как отмечают Людер и Цуффанти [5], он менее подходит, когда имеют ввиду переход электронов восстановителя к окислителю. Поэтому эти авторы объединяют восстановители и основания в класс электродотных реагентов, отклоняя наименование нуклеофильные . Мы все же будем пользоваться последним термином, чтобы сохранить связь с общепринятым делением реакций на реакции электрофильного и нуклеофильного замещения. [c.19]

    Основная часть органических красителей представляет собой производные трех соединений бензола, нафталйнй и антрахинона. Производные антрахинона занимают особое положение в химии красящих веществ и составляют ведущую группу среди светопрочных красителей разных классов. Этому способствует глубокая окраска многих простых замещенных и устойчивость большинства производных к действию окислителей, в частности к фотоокислению в условиях практической службы окрашенных изделий. По рентгенострук-турным данным плоская молекула антрахинона включает два мало деформированных, бензольных цикла, связанных парными карбонильными группами расстояние между углеродными атомами карбонильных групп и ароматических циклов близко соответствует величине ординарной связи. Строение дифенилендикетона определяет его пониженную реакционную способность в реакциях электрофильного замещения, а также относительную автономию бензольных циклов и облегченный обмен заместителей при действии нуклеофильных агентов. Сопряжение карбонильных групп с участием не локализованных двойных связей, а ароматических циклов определяет особое положение антрахинона в ряду хинонов и малую усхойчивость образующихся при его восстановлении л зо-диоксипроизводных антрацена. ,  [c.3]

    Более позитивные предсказания можно сделать при сравнении реакций нуклеофильного и электрофильного замещения в алифатическом ряду. В одном процессе при уходе отщепляющейся группы освобождается место для электронной пары реагента, а в другом — электронная пара при уходе отщепляющейся группы остается. В реакциях первого типа входящая и уходящая группы субстрата перемещаются со своими электронами связи и обычно являются анионами, такими, как окси-анионы или галогенид-ионы в реакциях второго типа эти группы входят и уходят без своих электронов связи и поэтому обычно являются катионами, такими, как ионы металлов или водорода. Вследствие того что множество простейших катионов представляет собой катионы металлов, можно ожидать, что электрофильное замещение в алифатическом ряду распространено в химии металлоорганических соединений, точно так же как нуклеофильное замещение распространено в химии соединений, которые по контрасту мы могли бы назвать неметаллоорганическими. Все металлы, связанные подходящим образом с другими группами, являются потенциальными участниками таких реакций, поэтому можно ожидать, что к электрофильному замещению в алифатическом ряду будут относиться главным образом реакции замещения металла на металл в алкилах металлов, а также представляющие особые случаи реакции замещения водорода на водород. [c.463]

    Поведение нитрогруппы следовало бы рассматривать с учетом того, связана ли она с насыщенным, ненасыщенным или ароматическим атомом углерода. Однако изложение может быть сокращено, если с самого начала выделить ряд общих свойств нитросоединений. Так, во-первых, нитрогруппа в насыщенных соединениях, подобно карбонильной группе, активирует а-во-дородные атомы, которые легко могут отрываться в виде протонов под действием подходящих оснований, причем образующиеся карбанионы будут затем взаимодействовать с простыми карбонильными соединениями или с а,р-пенасыщенными системами по реакциям типа альдольной конденсации или конденсации Михаэля. Под действием оснований также легко осуществляется сс-галогенировапие и другие реакции -замещения. Во-вторых, в а,р-ненасы-щенных соединениях нитрогруппа направляет реакцию нуклеофильного присоединения по связи С = С таким же образом, как карбонильная или нитрильная группы. В-третьих, в ароматических соединениях нитрогруппа оказывает настолько сильное дезактивирующее и л ета-ориентирующее действие, что полностью подавляет такие Е-реакции, как реакция Фриделя — Крафтса и меркурирование. Все эти свойства будут кратко проиллюстрированы ниже на примерах, а основное внимание будет уделено наиболее специфичным реакциям для нитросоединений. Изложение разбито на три раздела — нитроалканы, а,р-ненасыщенные нитросоединения и ароматические нитросоединения, поскольку реакции нитрогруппы, даже самые простейшие, например восстановление, в очень сильной степени зависят от природы углеводородного остатка, с которым она связана кроме того, реакции, свойственные собственно нитрогруппе, весьма немногочисленны. [c.494]

    Р II с. 3. Связь мс кду энергией и координатой реакции для различных типов ароматического нуклеофильного замещения и других двухстадийпых (а и б) и одностадийных в и е) процессов. Реакции а—в подчиняются простому бимолекулярному кинетическому закону в реакциях г—е кинетика усложняется второ11 стадией, лимитирующей общую скорость реакции. [c.394]


Смотреть страницы где упоминается термин Простая связь реакции нуклеофильного замещения: [c.39]    [c.266]    [c.18]    [c.148]    [c.137]    [c.455]    [c.54]    [c.144]    [c.191]    [c.137]    [c.137]    [c.55]    [c.134]    [c.347]    [c.577]   
Курс физической органический химии (1972) -- [ c.331 , c.336 , c.434 , c.437 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Простая связь реакции

Реакции замещения

Реакция нуклеофильного

Реакция простая

Связь простые связи



© 2025 chem21.info Реклама на сайте