Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масштаб

    Другая трудность заключалась в том, что не каждый атом урана, поглотивший нейтрон, претерпевает ядерное расщепление. Ядерному расщеплению подвергается довольно редкий изотоп — уран-235. Поэтому необходимо было разработать способы отделения и накопления данного изотопа. Это была беспрецедентная задача разделение изотопов в таких больших масштабах никогда ранее не проводилось. Исследования показали, что в этих целях можно использовать гексафторид урана, поэтому одновременно требовалось отрабатывать методику работы с соединениями фтора. После открытия плутония, который, как выяснилось, также подвергается ядерному расщеплению, было налажено производство его в больших количествах. [c.178]


    В этой связи следует остановиться на получении из природного газа чистого водорода — промышленном процессе, применяемом в широких масштабах, так как водород потребляется для получения аммиака и его производных (мировое производство аммиака составило в 1957 г. около 8,7 млн. т [22]). Этим процессом нефтехимическая промышленность объединяется с большой промышленностью неорганической химии (аммиак, азотная кислота, нитраты). [c.29]

    Получение бутадиена из этилового спирта разработано С. В. Лебедевым [2] и осуществлено в Советском Союзе в больших масштабах. Пары спирта пропускают над катализатором, представляющим собой комбинацию окиси алюминия и окиси цинка, при 400° и пониженном давлении (0,25 ат). Катализатор обладает одновременно дегидрирующим и дегидратирующим действием. Выход бутадиена составляет около 60% вес. от спирта. Может применяться также катализатор окись магния — окись хрома или окись кобальта — окись магния. [c.84]

    В процессе, разработанном фирмой Шелл, ароматические получают 98—99%-ной чистоты. Процесс применяется в больших масштабах для получения чистых бензола и толуола. В качестве экстракционной среды применяют также крезол. [c.108]

    Выделение о-ксилола фракционированием в промышленных масштабах еще не применяется. [c.110]

    Синтез глицерина. Синтез глицерина, осуществляемый в больших масштабах фирмой Шелл, проводится в соответствии со следующими уравнениями  [c.175]

    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]

    До настоящего времени, помимо нескольких установок окисления природного газа, окисление парафиновых углеводородов применялось )В промышленном масштабе главным образом при переработке твердого парафина для получения из этой смеси углеводородов жирных кислот, содержащих 20—25 углеродных атомов в молекуле. Окисление парафина сопровождается разрывом углеродных цепей с образованием жирных кислот различного молекулярного веса. Смеси сырых жирных кислот разделяют ректификацией на остаток и три широкие фракции  [c.10]


    Нитрование низщих и средних парафиновых углеводородов может легко и гладко осуществляться в настоящее время в промышленном масштабе. Поскольку нитропарафины обладают по меньшей мере такой же реакционной способностью, как ароматические нитросоединения, хотя и в других направлениях, этот путь открывает весьма широкие возможности проведения важных для промышленности синтезов на основе алифатических соединений. [c.11]

    Эти газы, как и природный газ, являются источником газообразных при нормальных условиях парафиновых углеводородов, практиче-. ски не содержащих нримеси олефинов. При осуществляемых в весьма крупных масштабах процессах крекинга и пиролиза как неизбежные побочные продукты образуются большие количества углеводородных газов, представляющих, однако, собой смесь парафиновых и олефиновых углеводородов. Этот вопрос будет подробнее рассмотрен во втором томе, посвященном олефиновым углеводородам. [c.16]

    По этой схеме, в течение ряда лет используемой в промышленном масштабе, в генератор водяного газа во время парового дутья вместе с водяным паром подается дополнительно метан. [c.79]

    Имеются сведения о предполагаемой реализации метода в промышленном масштабе [60].  [c.121]

    Потребление хлора для производства многочисленных продуктов, из которых важнейшими являются окись этилена (через хлоргидрин), хлористый этилен, хлорбензол, хлоруксусная кислота, трихлорэтилен и продукты, получаемые хлорированием ацетилена, достигло громадных масштабов. Так, в 1950 г. общее производство хлорированных парафиновых и олефиновых углеводородов в США достигло около 850 тыс. т. Общее производство всех ароматических полупродуктов, включая стирол (для промышленности синтетического каучука) и фталевый ангидрид, имеет значительно меньшие масштабы. [c.137]

    Как уже указывалось, реакции фотохимического хлорирования могут осуществляться в аппаратуре, аналогичной применяемой для реакций сульфохлорирования — впервые осуществленного в промышленном масштабе фото-химического процесса. На рис. 21 показано несколько иное аппаратурное оформление, в котором, в частности, следует отметить метод использования актиничного света [17]. [c.144]

    Этот новый процесс хлорирования был осуществлен в США в промышленном масштабе во время второй мировой войны в 1943 г. В настоящее время значительная часть четыреххлористого углерода синтезируется прямым хлорированием метана. Так, в 1950 г. этим способом было выработано около 50 тыс. т [65]. [c.165]

    Промежуточное положение между термическим и каталитическим хлорированием занимает газофазное хлорирование в присутствии взвешенного катализатора. Этот процесс был разработан Герольдом с сотрудниками [68] и в последнее время осуществлен в промышленном масштабе. [c.170]

    Интенсивное смешение исходных газов осуществляется в промышленном масштабе при помощи устройства, показанного на рис. 376. [c.171]

    В промышленном масштабе хлорирование пентана осуществляют термическим способом (рис. 40). [c.180]

    Недавно запатентован [157] карбамидный метод разделения первичных, и вторичных галогенидов парафиновых углеводородов, который, однако (насколько можно было судить по результатам, изложенным в примерах, приведенных в патентном описании), вряд ли может быть применен в промышленном масштабе для избирательного выделения замешенных при первичном углероде компонентов из продуктов хлорирования нефтяных фракций. [c.205]

    В промышленном масштабе хлористый метилен можно получать только хлорированием метана или хлористого метила. Для получе- [c.209]

    К ароматическим углеводородам, получаемым и перерабатываемым на нефтехимических заводах, относятся бензол, толуол и ксилол. Их получают каталитическим риформингом определенного нафтенового сырья. В меньшем масштабе при помощи специальных процессов получают и другие ароматические углеводороды — нафталин, его гомологи, а также ряд других конденсировапных ароматических углеводородов. [c.9]

    В научно-исследовательских лабораториях процессы окисления пизко-молекулярных углеводородов изучены весьма широко, тогда как о технологии этого процесса, осуществленного в промышленных масштабах фирмой Силениз Корнорейшн в США и другими, до сих пор точных сведений нет. [c.150]

    При реакции 1 моля этилена с 1 молем бензола при 95° образуется в равновесном состоянии около 51% мол. моноэтилбензола, в то время как 18% мол. бензола остаются не использованными. На рис. 139 показано соотношение бензола, этилбензола и полиэтилбепзола при проведении процесса алкилирования в промышленном масштабе в зависимости от отношения числа этильных групп к числу бензольных колец в реакционной смеси. [c.228]

    Алифатические углеводороды до недавнего времени считались инертными. Однако еще в прошлом веке Коновалов лакаэал возможность получения нитропарафинов прямым нитрованием углеводородов. Позднее отечественные ученые широко развили работы Коновалова, и в настоящее время благодаря плодотворным исследованиям наших ученых реализовано промышленное производство нитропарафинов. Хлорирование, окисление и нитрование парафиновьщ углеводородов с получением соответствующих полезных органических соединений в настоящее время осуществлено в широких промышленных масштабах. [c.5]


    Книга Ф. Азингера представляет обширный труд, посвященный вопросам химической переработки парафиновых углеводородов. В отличие от ранее изданной книги Р. Гольдштейна книга Азингера представляет серьезную Монографию и, может быть, едииственную, в которой так основательно изложен новейший материал по химии и технологии парафиновых углеводородов. В книге излагаются многочисленные собственные работы автора, результаты большинства из которых под его руководством осуществлены в промышленном масштабе в ГДР на предприятиях Лейна. [c.5]

    В то время как химия каменноугольной смолы базируется на ограниченных сырьевых ресурсах таких соеднненкн, как ароматические углеводороды — бензол, толуол, нафталин и антрацен, фенол, крезол и т. д., промышленность алифатических продуктов располагает практически неограниченными ресурсами углеводородного сырья. Сырьевые ресурсы коксобензольной промышленности ограничиваются каменноугольной смолой они значительно меньше, чем ресурсы промышленности алифатических соединений, включающие нефть и продукты синтеза Фишера — Тропша. Поэтому промышленная переработка алифатических углеводородов уже достигла в настоящее время громадных масштабов. Производство специальных бензинов, растворителей, мягчителей, пластификаторов, пластмасс, синтетических моющих средств, вспомогательных материалов для текстильной промышленности, эмульгаторов и других продуктов в количественном и ценностном выражениях уже значительно превысило продукцию коксобензольной промышленности и приближается к соответствующим показателям основной неорганической химической промышленности. [c.10]

    Твердый парафин, имеющий важное значение для химической переработки, можно получать в промышленном масштабе из нефтяных дистиллятов, смол швелевания бурых углей и сланцев или синтетическим гидрированием окислов углерода, например, по процессу Фишера - - Тропша — Рурхеми. [c.45]

    Во время второй мировой войны вследствие дефицита кобальта над проблемой замены кобальта, на железо в синтезе Фишера — Тропша работали многие фирмы. В 1943 г. исследования продвинулись настолько, что на заводе в Шварцхайде были проведены трехмесячные промышленного масштаба испытания шести различных катализаторов на основе железа с целью выбора катализатора с наибольшей удельной производительностью. Испытания велись в условиях синтеза среднего давления на кобальтовом катализаторе с тем, чтобы была обеспечена возможность прямого перехода с кобальтового катализатора на железный без изменения условий синтеза. Результаты этих опытов, имевших большое значение для последующей разработки процесса, будут подробно изложены в последующем. [c.68]

    В США опробованы в промышленном масштабе процесс в псевдо-ожиженном слое катализатора (метод кипящего слоя) и в полупромышленном масштабе другие жидкофазные процессы. В одном из них используют шламообразный катализатор, а тепло реакции отводится циркуляцией, заполняющей реактор жидкой фазы через выносной холодильник. В другом процессе используют стационарный катализатор, а тепло отводится циркуляцией масла через реактор и выносной холодильник. Циркулирующее мйсло и синтез-газ пропускают через реактор с такими скоростями-, чтобы катализатор в нем все время находился в легком движении и не слеживался. [c.69]

    После этого синтез Фишера — Тропшв был реализован рядом фирм в Германии, и масштаб производства когазина [4] год от году увеличивался. Почти все установки работали по одному и тому же принципу. С 1938 г. строительство новых предприятий прекратилось. В 1939 г. в Германии было 9 установок общей мощностью около 600 ООО г продуктов синтеза [5]. [c.70]

    Чисто термическое хлорирование метана осуществлено в промышленном масштабе в Германии на заводе в Гехсте. Эта установка, пущенная в 1923 г., ло-видимому, является самой старой промышленной установкой хлорирования метана. [c.168]

    Хлорирование высокомолекулярных парафиновых углеводородов, например нефтяных фракций парафинового основания или когазина II, часто проводят в промышленном масштабе для получения как хлоркогазина — полупродукта для производства синтетических смазочных масел, так и вспомогательных материалов для текстильной промышленности и средств для чистки. [c.182]

    В этих опытах особенно широко применяли в качестве исходного сырья дихлорпентаны, образующиеся в качестве побочйого продукта при термическом хлорировании пентана в условиях получения монохлорпроизводных. Это объясняется доступностью и дешевизной дихлорпентанов вследствие сравнительно крупных масштабов установок про-мышланного хлорирования пентанов (см. стр. 180). При хлО р Олизе ди-хлориентаны также превращаются в четыреххлористый углерод и гексахлорэтан. [c.188]

    В последнее время на химическом заводе в Хюльсе тетрахлорэти-леи начали вырабатывать в промышленном масштабе хлорированием метана при высокой температуре. На этой установке при высокой температуре (до 700°) проводят реакцию 10 м 1час метана с 80 м час хлора. При этом образуется главным образом тетрахлорэтилен наряду с четыреххлористым углеродом и небольшими количествами гексахлорэтаиа и гексахлорбензола [105]. [c.192]

    Применимый в промышленном масштабе процесс непрямого фторирования основан на рассмотренном выше взаимодействии углеводорода, разбавленного азотом, с трехфтористым кобальтом при 230—350° [140]. По этому методу можно перфторировать н-гептан с выходом 80%. Образующийся дифтористый кобальт при 200—250° под действием элементарного фтора снова превращается в трехфтористый кобальт. Фтористый кобальт в свою очередь можно получать из хлористого кобальта пропусканием фтористого водорода при 350—450° [141]. [c.202]

    Продукты хлорирования низкомолекулярных алифатических насыщенных углеводородов до сего времени не вырабатываются в сколько-нибудь значительных количествах при помощи реакщ й двойного обмена, хотя подобным процессам и посвящено большое количество патентов. Многочисленные предложения по дальнейшему использованию хлористого метила еще не реализованы в промышленндм масштабе, если не считать его применения в качестве хладагента или метилирующего реагента, в частности, для производства метилцеллюлозы. [c.206]

    Потребление тетраэтилсвинца достигло чрезвычайно крупных масштабов. Уже в 1937 г. оно составило только в США 30 000 т. В США этилируют 70% общего потребления бензина, что соответствует приблизительно 64 млн. м . В среднем на 1 л бензина добавляют 0,27 мл этиловой жидкости, чем достигается среднее повышение октанового числа на 8 единиц. Этим удается приблизительно на 5% повысить ресурсы топлива, что дает экономию бензина около 2,8 млн. м 1год [178]. В США в 1950 г. для проиэводства тетраэтилсвинца было израсходовано около 114 тыс. т свинца [179]. [c.212]


Смотреть страницы где упоминается термин Масштаб: [c.5]    [c.133]    [c.136]    [c.25]    [c.25]    [c.186]    [c.52]    [c.64]    [c.126]    [c.189]    [c.132]    [c.160]    [c.195]    [c.206]   
Перемешивание и аппараты с мешалками (1975) -- [ c.0 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.0 ]

Экстрагирование из твердых материалов (1983) -- [ c.0 ]

Введение в моделирование химико технологических процессов (1973) -- [ c.18 ]

Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.0 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.0 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте