Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость коллоидных растворов Коагуляция

    УСТОЙЧИВОСТЬ коллоидных РАСТВОРОВ. КОАГУЛЯЦИЯ [c.124]

    Поэтому pH сока является важнейшим фактором, влияющим на устойчивость коллоидного раствора. Коагуляция коллоидных растворов может также наступить при действии света, при изменении температуры, электрического поля и концентрации растворов электролитов. [c.104]

    Устойчивость коллоидных растворов. Коагуляция [c.240]


    С. И. Соколов и др.) провели ряд экспериментальных исследований, посвященных образованию и устойчивости коллоидных растворов, коагуляции, а также разнообразным приложениям коллоидной химии. [c.246]

    Лучшие свойства обеспечиваются при получении частичек менее 1 мкм, что соответствует истинно коллоидному раствору. Последний отличается от суспензии сравнительно меньшей скоростью седиментации, что связано с броуновским движением, присущим частичкам в коллоидных растворах. Не являясь истинными растворами, частички малых размеров при определенных концентрациях по закону энтропии стремятся к равномерному распределению в объеме. Этому препятствует коагуляция. Согласно теоретическим и экспериментальным данным устойчивость коллоидных растворов повышается с уменьшением размеров частичек. Это связано, в частности, с тем, что чем крупнее частичка, тем выше вероятность ее превращения в центр коагуляции. [c.364]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]

    Достаточная устойчивость коллоидного раствора обеспечивается при величине электрокинетического потенциала = 0,07В. При < 0,03В у некоторой доли частиц силы отталкивания оказываются недостаточными, чтобы противостоять агрегации, и поэтому происходит слияние частиц, их укрупнение или коагуляция, которая неизбежно заканчивается седиментацией. [c.412]

    Глава XV. АГРЕГАТИВНАЯ УСТОЙЧИВОСТЬ КОЛЛОИДНЫХ РАСТВОРОВ И КОАГУЛЯЦИЯ [c.415]

    Следует заметить, что прямая связь между величиной дзета-потенциала и коагуляцией наблюдается во многих случаях. Так, существует симбатность в изменении дзета-потенциала и устойчивости коллоидов. Однако величина дзета-потенциала не всегда определяет устойчивость коллоидного раствора. Иногда коагуляция начинается при незначительном уменьшении дзета-потенциала и даже при некотором его увеличении. Известно много случаев, когда при значительном уменьшении дзета-потенциала (даже до = 0) коагуляция не происходит. [c.421]


    Электролиты, находящиеся в коллоидном растворе, уменьшают дзета-потенциал и соответственно понижают устойчивость коллоидного раствора. Именно поэтому с целью повышения устойчивости применяют диализ для удаления электролитов из коллоидного раствора. Однако глубокий диализ приводит к противоположному результату, вызывая коагуляцию коллоидов. Рассмотрим коллоидный раствор положительно заряженных частиц (Agl), , который содержит некоторое избыточное количество ионов Ag и примеси нитрата натрия, от которой необходимо избавиться с помощью диализа. Во время диализа происходит одинаковое относительное уменьшение концентрации всех ионов, которые находятся в растворе, — примеси Na+, N07 и ионов Ag . Последние должны содержаться в растворе для сохранения адсорбционного равновесия, т. е. для сохранения стабильным наряда коллоидных частиц (Agi),,,. Как видно из рисунка 106, уменьшение концентрации ионов серебра в растворе, происходящее вместе с уменьшением концентрации примесей (Na и N07), вначале мало влияет на величину адсорбции ионов Ag+. Заряд ядра и соответственно величина термодинамического потенциала почти не изменяются, а в связи со значительным уменьшением концентрации противоионов (ионов N07) в растворе возрастает дзета-потенциал устойчивость коллоидного раствора увеличивается. [c.423]

    Таким образом, -потенци зл зависит в основном от концентрации раствора электролитов и валентности ионов, тогда как потенциал плотного штерновского слоя фо определяется специфическими адсорбционными свойствами ионов. Этим можно объяснить различное влияние ионов одинаковой валентности на коагуляцию и устойчивость коллоидных растворов (см. гл. VI, стр. 114 и сл.). [c.95]

    Если заряд коллоидной частицы уменьшить до некоторого минимума, то устойчивость коллоидного раствора нарушится, произойдет слипание и соединение частиц в более крупные агрегаты (этот процесс называется коагуляцией) и их осаждение (седиментация). [c.168]

    Коагуляция, седиментация и пептизация коллоидных растворов. Изменение потенциала коллоидной частицы приводит к слипанию частиц между собой, что снижает степень дисперсности и устойчивость коллоидного раствора. Этот процесс называется коагуляцией. Если процесс коагуляции незначителен, то коллоидный раствор сохраняется. Так, если окраска золя золота изменяется из красной в фиолетовую, то это указывает, что имеет место процесс коагуляции. Если, коагуляция продолжается, то раствор мутнеет и укрупнившиеся хлопья дисперсоида начинают осаждаться. Этот процесс называется седиментацией. [c.223]

    С уменьшением электрокинетического потенциала агрегативная устойчивость коллоидного раствора снижается и при некотором критическом значении -потенциала начинается коагуляция. Поверхностный потенциал при этом не изменяется. [c.205]

    Соли щелочных металлов и магния при достаточно высокой их концентра ции осаждают— высаливают —многие белки из их растворов. Причинами высаливания белков являются как снятие электрического заряда коллоидных частиц белка адсорбирующимися на них противоположно заряженными ионами соли, так и снятие водных оболочек с гидрофильных частиц белка сильно гидратирующимися ионами добавленной в большом количестве соли. Оба указанных фактора уменьшают устойчивость коллоидного раствора, так как облегчают слипание и укрупнение (коагуляцию) частиц белка, и последний выпадает в осадок. [c.353]

    Всякая причина, вызывающая уменьшение или уничтожение (нейтрализацию) электрических зарядов гранул, понижает устойчивость коллоидных растворов и приводит к укрупнению частиц в более сложные агрегаты. Процесс укрупнения называется коагуляцией. Внешне она сопровождается появлением мути, изменением окраски золя и, наконец, образованием осадка. Выпадение дисперсной фазы в осадок называется седиментацией (оседанием). [c.71]

    Значительное уменьшение /макс происходит в результате изменения потенциальной энергии электростатического отталкивания (т. е. хода кривой 1), вызванного добавлением электролитов к коллоидному раствору. С увеличением концент.рации любого электролита происходит перестройка двойного электрического слоя, окружающего коллоидные частицы все ббльшая часть противоионов вытесняется из диффузной в адсорбционную часть двойного электрического слоя. Толщина диффузной части двойного электрического слоя (слой 4 на рис. 100), а вместе с ней и всего двойного электрического слоя (слой 2 на рис. 100) уменьшается. Поэтому кривая потенциальной энергии электростатического отталкивания снижается более круто, чем показанная на рис. 103 кривая 1. В результате этого потенциальный барьер отталкивания ( /макс) уменьшается и смещается в сторону меньшего расстояния между коллоидными частицами. Когда двойной электрический слой сжимается до толщины адсорбционного слоя (слой 3 на рис. 100), то вся кривая взаимодействия дисперсных частиц оказывается в области притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция. Такое изменение устойчивости коллоидного раствора происходит при добавлении любого электролита. [c.323]


    Устойчивость коллоидных растворов и их коагуляция [c.218]

    Т-ЛЛва 10. Устойчивость коллоидных растворов. Коагуляция 145 [c.145]

    Факторы коагуляции коллоидных систем бывают весьма разнообразными. Коагуляция может быть вызвана повышением температуры, длительным диализом, добавлением электролитов, разного рода механическими воздействиями (размешиванием, встряхиванием, взбалтыванием), сильным охлаждением, ультрацен-трифугиронанием, концентрированием, пропусканием электрического тока, а также действием на данный золь других золей. В ряде случаев коагуляция может происходить в результате химических реакций, протекающих в золях (явление старения). Поскольку главное условие уменьшения устойчивости коллоидных растворов— потеря электрического заряда, основными методами их коагулирования являются методы снятия зарядов. Чаще всего в практике для этой цели пользуются воздействием иа коллоидные растворы различных электролитов. [c.367]

    Повьш1ение температуры оказывает влияние на устойчивость коллоидных растворов. Это влияние не однозначно. С одной стороны, повышение температуры приводит к частичной десорбции ионов с поверхности ядра, к уменьшению его заряда. Это приводит к уменьшению общего скачка потенциала и соответственно к уменьшению дзета-потенциала. С другой стороны, повышение теипературы отвечает увеличению интенсивности хаотического движения ионов в растворе. Распределение ионов в слое жидкости, прилегающей к поверхности, становится более равномерным. В результате меньшее их количество остается в адсорбционном слое, толщина диффузного слоя становится больше, что приводит к увеличению дзета-потенциала. Отметим также, что повышение температуры увеличивает кинетическую энергию коллоидных частиц, что позволяет им преодолевать более высокий потенциальный барьер и входить в зону, где преобладающими становятся силы притяжения. Таким образом, повышение температуры, с одной стороны, способствует коагуляции, с другой стороны, препятствует ее протеканию. Поэтому заранее нельзя предсказать, как именно повлияет повышение температуры на устойчивость конкретного коллоидного раствора. Тем не менее опыт показывает, что в большинстве случаев повышение температуры вызывает коагуляцию. [c.422]

    Концентрационная коагуляция связана с увеличением концентрации электролита, не вступающего в химическое взаимодействие с компонентами коллоидного раствора. Такие электролиты называют индифферентными они не имеют ионов, способных достраивать ядро мицеллы и вступать в реакцию с потенциалопределяющими ионами. При увеличении концентрации индифферентного электролита диффузный слой противоионов мицеллы сжимается, переходя в адсорбционный слой. В результате уменьщается электрокинетический потенциал и он может стать равным нулю. Такое состояние коллоидной системы называется изоэлектрически м. С уменьшением электро-кинетического потенциала агрегативная устойчивость коллоидного раствора снижается и при критическом значении дзета-потен-циала начинается коагуляция. Термодинамический потенциал при этом не изменяется. [c.331]

    Под воздействием различных факторов коллоидные растворы способны разрушаться. Разрушение может сопровождаться слипанием отдельных частиц с образованием крупных агрегатов. Такой процесс разрушения коллоидного раствора называется кодгуляцией. Коагуляция нарушает агрегативную устойчивость коллоидного раствора, крупные агрегаты частиц легко седиментируют под действием гравитационных сил. [c.24]

    В связи с развитием представлений о факторах устойчивости коллоидных растворов были предложены и теории коагуляции. Долгое время не удавалось подобрать характеристику, определяющую состояние золя, которая могла бы служить мерой коагуляции. 1 Зигмонди пытался принять в качестве такой меры уменьшение интенсивности броуновского движения (при наблюдении в ультрамикроскоп) коллоидных частиц при добавке к золям электролитов. Но этот признак оказался неудачным, и в 1916 г. Р. Зигмонди пришел к мысли принять в качестве меры коагуляции уменьшение числа частиц золя в процессе его коагуляции. Он в начале 1916 г. обратился к краковскому физику Мариану Смолуховскому (1872—1917) с просьбой подсчитать уменьшение числа частиц золя в процессе его коагуляции. В ответ на это М. Смолуховский обстоятельно разработал теорию коагуляции, которая была опубликована в 1918 г. Большое научное и практическое значение получили исследования по адсорбции, предпри- [c.255]

    При размере частиц 1 мкм и более такие цепочки видны невооруженным глазом и поэтому визуализируют картину пространственного распределения поля. Простой опыт с железными опилками, рассыпанными по листу бумаги, и постоянным магнитом является хорошей демонстрацией этого эффекта. В однородном поле взвесь магнитных частиц образует систему параллельных цепей, которые могут иметь неограниченную длину. При размере частиц около 1 мкм невозможно приготовить устойчивый коллоидный раствор ферромагнетика из-за очень сильного магнитного дипольного взаимодействия частиц и быстрой коагуляции взвеси. Между тем представлялось очень заманчивым получить раствор, который обладал бы сильными магнитными свойствами и в то же время вел себя как однородная жидкость. Эта задача была решена в 1962 году в Технологическом институте (Санкт-Петербург). Здесь же к 1964 году были изучены и описаны основные свойства таких жидкостей — концентрированных коллоидных растворов магнетита. Позднее они получили название феррожидкостей и стали материальной основой, по крайней мере, двух новых направлений в науке и технике физики магнитных жидкостей и феррогид-родршамики. [c.661]

    Коагуляцию коллоидных растворов можно предотвратить добавлением так называемых зшцнтны. к коллоидов, (oтopыми могут служить некоторые макромолекулярные вещества, например крахмал и желатина. С использованием защитных коллоидов можно приготовить относительно устойчивые коллоидные растворы Таких веществ, которые сами по себе не склонны к образованию/коллоидов, например коллоидные растворы металлов (серебра, золота и др.). [c.32]

    В те го Ы центральными проблемами коллоидной химии являлись проблема устойчивости коллоидных растворов и соответственно исследование механизма их коагуляции. Было предложено отдельно рассматривать кинетическую и агрегативную устойчивость коллоидных систем 141. Первая, в соответствии с уравнением Стокса и теорией броуновского движения, связана с размером частиц, их плотностью, вязкостью дисперсной среды вторая определяется факторами, препятствующими слипанию частиц (образованию агрегатов). В отношении факторов агрегативной устойчивости коллоидные растворы делились на гидрофобные и гидрофильные (такое деление сохранилось и в настоящее время). В 30-х годах устойчивость гидрофобных коллоидов объясняли зарядом и электроки-нетическим потенциалом частиц, а устойчивость гидрофильных — их гидратацией (сольватацией). [c.82]

    Для обеспечения полноты выпадения осадка, который (проявляет тенденцию к образованию устойчивого коллоидного раствора, можно применять органические соединения, образующие золи. Частицы такого золя, несущие определенный электрический заряд, компенсируют иротивоположный по знаку заряд яа коллоидных частицах образующегося осадка, тем самым инициируя быструю коагуляцию. Это можяо проиллюстрировать на примере использования желатины или агар-агара в качестве коагулянтов при осаждении кремневой кислоты соляной кислотой. Если поддерживать определенные значения температуры и кислотности, то окоагули-рованный осадок кремневой кислоты будет столь чистым, что никакой последующей очистки не требуется (в отличие от продукта, получаемого методом многократного выпариваяия с соляной кислотой). Однако осаждение в данном случае все же не является полным. [c.187]


Смотреть страницы где упоминается термин Устойчивость коллоидных растворов Коагуляция: [c.335]    [c.299]    [c.336]    [c.168]    [c.299]    [c.144]    [c.5]    [c.4]    [c.84]    [c.529]    [c.134]    [c.320]    [c.335]   
Смотреть главы в:

Коллоидная химия -> Устойчивость коллоидных растворов Коагуляция




ПОИСК





Смотрите так же термины и статьи:

Агрегативная устойчивость коллоидных растворов Коагуляция

Коагуляция

Коллоидные и коагуляция

Коллоидные растворы и другие дисперсные системы. Использование коллоидного графита в вакуумной технике. Устойчивость коллоидных растворов. Роль адсорбции. Заряд частиц. Электрокинетические явления. Использование их для приготовления оксидных катодов и в других целях. Понятие о гелях. Коагуляция коллоидов

Коллоидные растворы коагуляция

Методы измерения устойчивости и коагуляции коллоидных растворов

Растворы коллоидные

Устойчивость и коагуляция коллоидных растворов и суспензий Кинетическая и агрегативная устойчивость дисперсных систем

Устойчивость растворов



© 2024 chem21.info Реклама на сайте