Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй закон термодинамики. Фазовое равновесие

    Применение второго закона термодинамики к фазовым равновесием [c.49]

    Принцип Ле Шателье—Брауна, являющийся следствием второго закона термодинамики, определяющего направление процессов в различных системах, относится не только к химическим реакциям, но и к другим равновесным явлениям, в частности к фазовым равновесиям. [c.195]

    Качественная характеристика гетерогенных многофазных систем, в которых совершаются процессы перехода компонентов из одной фазы в другую (фазовые переходы) дается правилом фаз Гиббса. Это правило основано на втором законе термодинамики и относится только к системам, находящимся в состоянии истинного равновесия , Основными понятиями правила фаз являются фазы, компонент и степень свободы. [c.162]


    I. Введение 48 2. Применение второго закона термодинамики К фазовым равновесиям 49 3. Зависимость химического равновесия от температуры 53 [c.4]

    Гл. 15-19 образуют третий учебный цикл, в котором рассматриваются вопросы термодинамики и химическое равновесие. Материал, касающийся первого и второго законов термодинамики, не изменился по сравнению с прежними изданиями книги, но теперь он разбит на три главы, что облегчит усвоение материала. Статистическое описание энтропии дано в более простой форме. Добавлена новая, 18-я глава по фазовым равновесиям. Поскольку этот материал излагается с привлечением количественного описания, он часто оказывается трудным для начинающих студентов в связи с этим мы значительно увеличили число примеров в тексте, пересмотрели имевшиеся упражнения и добавили новые. [c.10]

    Сборник задач и упражнений по физической и коллоидной химии содержит 800 задач и упражнений, относящихся к следующим разделам данного курса газы и жидкости, первый и второй законы термодинамики, термохимия, фазовые равновесия и растворы, химическое равновесие, химическая кинетика, электрохимия, поверхностные явления, коллоидное состояние вещества, Каждый раздел включает параграфы, в которых кратко излагаются некоторые теоретические вопросы, приводятся формулы, необходимые для решения задач. В разобранных примерах даны методические указания для решения задач и выполнения упражнений. [c.2]

    Общие соотношения, вытекающие из второго закона термодинамики, дают ВОЗМОЖНОСТЬ установления условий химического равновесия. Наиболее простым случаем является равновесие при химических реакциях, протекающих без фазовых превращений, в которых как исходные вещества, так и продукты находятся в одной фазе, например реакции между газами или реакции в растворах. [c.47]

    Возможность перехода вещества из одного фазового состояния в другое (из одной фазы в другую) определяется одним из общих законов химии и физики — правилом фаз Гиббса. Правило фаз Гиббса применимо к равновесным системам и является выражением второго закона термодинамики в приложении к фазовым равновесиям. [c.13]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]


    При переходах индивидуального вещества из одного агрегатного состояния в другое каждому давлению соответствует определенная температура, при которой фазы находятся в состоянии термодинамического равновесия. Зависимость давления фазового перехода от температуры описывается уравнением Клапейрона—Клаузиуса, выведенном на основе второго закона термодинамики. Для вывода этого уравнения рассмотрим в р—у -коорди-натах элементарный цикл, соответствующий площади 1-2-3-4 (рис. 30). [c.106]

    Общие закономерности, вытекающие из второго закона термодинамики, применимы к химическим превращениям и дают возможность установления условий химического равновесия. Наиболее простым случаем является равновесие при химических реакциях в однородных средах, например в смесях газов или в растворах, которые не сопровождаются фазовыми переходами. Такие реакции, где и исходные вещества и продукты находятся в одной фазе, называются гомогенными. [c.61]

    Одним из самых общих законов физической химии является закон равновесия фаз, называемый правилом фаз. Он был сформулирован Дж. В. Гиббсом в 1878 г. Это правило основано на втором законе термодинамики и справедливо для любых гетерогенных систем, находящихся в состоянии химического и фазового равновесия. [c.129]

    Второй закон термодинамики, установленный первоначально чисто эмпирическим путем, получил развитие в статистическом рассмотрении термодинамических явлений. Статистическая термодинамика показала, что термодинамические функции отражают все особенности внутреннего строения вещества и условий его существования пользуясь этими функциями, мы в суммарной форме отражаем влияние этих особенностей на тепловой эффект реакции, на положение равновесия и пр. Учение о строении молекул дало возможность установить и понять закономерности в тепловых эффектах различных процессов, расширило и углубило понимание химических и фазовых равновесий, дало возможность выявить физический смысл рассматриваемых соотношений. [c.239]

    Согласно третьему закону термодинамики энтропия жидкой фазы, так же как и твердой, при абсолютном нуле температуры должна обращаться в нуль. В связи с этим приобретает большой интерес вопрос о распределении атомов в жидком гелии, особенно при наиболее низких температурах. Плотность жидкого гелия мала, под давлением насыщенных паров она составляет всего около 0,14 г/мл, что в значительной мере объясняется малой молекулярной массой гелия (заметим, что плотность жидкого водорода примерно в два раза меньше плотности жидкого гелия). Необычна зависимость плотности Не от температуры (рис. 61). Там же представлена температурная зависимость теплоемкости С вдоль линии равновесия жидкость — пар. При температуре 2,173 К и 49,80 10 Па плотность жидкого Не проходит через максимум, после чего функция р = /(Г) резко меняет свое направление, плотность быстро уменьшается. Теплоемкость тоже аномально зависит от температуры. Кривая теплоемкости похожа на греческую букву X. При 2,182 К теплоемкость является разрывной функцией. Здесь в жидком Не происходит фазовый переход второго рода. Температура этого фазового перехода ( Х-точки ) немного снижается при увеличении давления. Жидкую фазу при температурах, соответствующих Х-точкам и ниже, принято называть гелий II . Жидкая фаза при температурах, лежащих выше Х-точек, названа гелий 1 . [c.229]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]

    Термодинамические исследования в области химической термодинамики основаны на применении первого, второго и третьего законов термодинамики. В химической термодинамике описываются методы определения тепловых эффектов химических реакций (этот раздел химической термодинамики называется термохимией), условия протекания необходимых химических реакций и способы, предотвращающие нежелательный ход химического процесса, а также методы определения условий химического и фазового равновесия системы и влияния на равновесие внешних условий. [c.10]


    Во второй части книги аппарат термодинамики используется для рассмотрения систем с фазовыми и химическими превращениями. Расчет тепловых эффектов и условий равновесия производится с использованием таблиц стандартных величин и полных энтальпий. На основе третьего закона термодинамики дается представление, 0 методе вычисления значений термодинамических функций. Кратко рассмотрены элементы кинетики химических реакций — раздела, тесно примыкающего к термодинамике химических превращений. Применение термодинамических зависимостей иллюстрируется примерами с решениями. [c.3]

    Тепловые балансы составляются на основе первого начала. Расчеты фазового и химического равновесий осуществляются на основе второго начала и третьего закона термодинамики. [c.10]

    Химическая термодинамика есть приложение законов и методов термодинамики к изучению химических и физико-химических процессов. Первый закон термодинамики служит основой для определения энергетических эффектов этих процессов. На него опирается термохимия, которая возникла раньше химической термодинамики и до открытия первого ее закона, но затем вошла как составная часть в химическую термодинамику. Второй закон термодинамики лежит в основе изучения химических равновесий и направлений химических реакций, а также фазовых равновесий и превращений. Опять-таки сам факт химических равновесий и важные законы, относящиеся к фазовым переходам, были открыты либо до возникновения химлческой термодзанамики, либо вне связи с ней, но затем феноменологические обобщения в этой области получили свое истолкование с точки зрения общих термодинамических принципов. Результаты, полученные в рамках нетермодинамической термохимии и феноменологического учения о химических и фазовых равновесиях и переходах, способствовали возникновению и дальнейшему развитию самой химической термодинамики. [c.109]

    Ближайший анализ этих превращений, в особенности по данным температурной зависимости теплоемкости, обнаружившей характерные Х-образные участки на кривой, показывает, что они в бо,пьшинстве своем имеют кооперативный характер, т. е. не подчиняются законам термодинамики химического равновесия, протекают без прерывного изменения термодинамических функций состояния, т. е. обладают всеми признаками так называемых фазовых превращений второго рода. [c.172]

    Учет фазовых равновесий очень важен для понимания или анализа любого процесса массопередачи. Именно здесь многое должна определять термодинамика, поскольку второй закон устанавливает условия равновесия. Термодинамическая теория разработана достаточно хорошо, хотя на практике она не дает необходимой связи между активностями и концентрациями. В одних случаях эта зависимость известна. В других случаях может оказаться достаточным эмпирическое правило Льюиса и Рэн-долла, правда, иногда может потребоваться и более затрудненный анализ, построенный на сложных уравнениях состояния или на молекулярной теории. Так или иначе, студент либо инженер, имеющий дело с проблемами переноса массы, должен знать и теорию, и эмпирические факты термодинамики фазовых равновесий. Кроме того, с помощью первого закона термодинамики можно проводить вычисления необходимых балансов энтальпий, [c.14]

    Сборник для самоконтроля охватывает следующие разделы физической химии Молекулярная спектроскопия , Первый и второй законы термодинамики , Молекулярная статистика , Фазовое равновесие в однокомпонентных и двухкомпонентных системах , Растворы , Химическое равновесие , Электрохимия , Химическая кинетика . Материал сборника может быть использован для составления пособий машинного и безмашин-ного контроля, а такл<е с использованием ЭЦВМ. [c.375]

    Основными объектами термодинамики являются энергетические балансы и равновесия при химических и фазовых превращениях. Решение первой группы вопросов основано на первом законе, а второй — на втором и третьем законах термодинамики. Введем некоторые необходимые термины. Системой называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. При этом рассматриваются макроскопические системы. Если система не взаимодействует с окру-лсающей средой, т. е. ее энергия и объем постоянны, то она называется изолированной. Если в систему поступает или из нее удаляется вещество, то она называется открытой. Если же такого обмена веществом нет, то система называется закрытой. Состояние любой системы определяется сизокупностью таких параметров, как объем, давление, температура, концентрации входящих в нее веществ. [c.12]


Смотреть страницы где упоминается термин Второй закон термодинамики. Фазовое равновесие: [c.9]    [c.114]    [c.417]   
Смотреть главы в:

Теоретические основы типовых процессов химической технологии -> Второй закон термодинамики. Фазовое равновесие




ПОИСК





Смотрите так же термины и статьи:

Закон второй

Закон термодинамики

Закон термодинамики второй

Равновесие фаз, закон

Равновесие фазовое

Термодинамики второй



© 2024 chem21.info Реклама на сайте