Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Одноатомный криптон Кг

    Вириальные коэффициенты и их производные одноатомного криптона Кг (газ)  [c.903]

    Главную подгруппу восьмой группы периодической системы составляют благородные газы — гелий, неон, аргон, криптон, ксенон и радон. Эти элементы характеризуются очень низкой химической активностью, что и дало основание назвать их благородными газами. Они лишь с трудом образуют соединения с другими элементами или веществами химические соединения гелия, неона и аргона не получены. Атомы благородных газов не соединены в молекулы, иначе говоря, их молекулы одноатомны. [c.492]


    В каком же соответствии находятся результаты этой теории с экспериментальными значениями теплоемкостей разреженных простых газов Опыт показывает, что молярные изохорные теплоемкости всех одноатомных газов (аргон, криптон, ксенон, пары металлов) при обычных температурах действительно очень близки к значению 12,5 Дж/(моль К), а изобарные теплоемкости тоже не сильно отличаются от значения 21 Дж/(моль К). Для двухатомных газов (водород, азот, кислород и др.) значения молярных изохорных и изобарных теплоемкостей также очень близки к предсказанным значениям = 21 Дж/(моль- К) и Ср = 29 Дж/(моль К). [c.29]

    Вы, вероятно, знаете, что лишь немногие химические элементы гелий, неон, аргон, криптон и ксенон — при обычных условиях находятся в состоянии одноатомного пара. Свободные атомы большинства элементов стремятся образовать более сложные системы — молекулы или немолекулярные кристаллы. Следовательно, у этих элементов электронная структура свободных атомов обладает лишь относительной устойчивостью (например, в состоянии крайне разреженного пара), тогда как при сближении атомов образуются системы с более стабильной электронной конфигурацией. Это явление носит название образования химической связи. [c.168]

    Наиболее широко в адсорбционных исследованиях используется аргон-, по сравнению с Кг и Хе он, по-видимому, более перспективен для определения удельной поверхности. Эти три газа проявляют значительные различия в ряде важных свойств (табл. 25). Потенциалы ионизации этих газов одинаково высоки вследствие большой устойчивости внешних электронных оболочек, поэтому они химически инертны и образуют одноатомные газы с низкой температурой кипения. Зато другие свойства этих инертных газов более сильно зависят от их атомных номеров, и, что особенно важно для адсорбции, самый легкий из них — аргон — имеет наиболее низкую поляризуемость. В результате представляется маловероятным, что другие газы проявляют заметное изменение теплоты адсорбции при переходе от одного твердого тела к другому и имеют резко выраженный локализованный характер адсорбции (который, как мы видели, по-видимому, проявляется в случае адсорбции криптона и ксенона на некоторых металлах). [c.108]

    Этой формулой пользовалась Л. С. Зайцева [217] для описания температурной зависимости одноатомных газов. При этом значение 1р для исследованных газов (гелий, неон, аргон, криптон, ксенон и пары ртути) менялось от 0,0044 до 0,1226, а показатель степени п от [c.148]


    В качестве составных частей в природные газы могут входить одноатомные газы (гелий, неон, аргон, криптон и ксенон), двухатомные (водород, кислород, азот, окись углерода), трехатомные (двуокись углерода, двуокись серы, сероводород) и многоатомные газообразные углеводороды. Пары воды — постоянные спутники природных газов. Хлористый и фосфористый водород, а также аммиак, изредка встречаются в природных газах, но в очень незначительных количествах содержание водорода, окиси углерода, непредельных углеводородов обычно не превышает количество, обозначаемое в газовом анализе как следы . Большое содержание кислорода и водорода — случайное, не характерное явление в природных газах. В горючих природных газах азот содержится в количестве от 1 до 30%. [c.257]

    Благородные газы — гелий, неон, аргон, криптон, ксенон, радон. Одноатомные газы, в обычных условиях химически инертны. Долгое время их считали абсолютно инертными, однако за последние 25 лет удалось получить соединения большинства этих элементов. [c.11]

    Третья группа элементов составлена из /7-элементов с завершенными внешними о-оболочками атомов (s-p ) и гелия Не. Это инертные элементы, иначе — инертные или благородные газы. Атомы инертных элементов в соответствии с устойчивостью Is- и s -jo -конфигурации электронов на их внешнем уровне в большинстве случаев при контакте с другими атомами и молекулами не проявляют тенденции ни к присоединению электронов, ни к отдаче. Это самые инертные, самые нереакционноспособные из всех известных элементов. Их инертность проявляется в одноатомности газообразных молекул, в очень низких температурах плавления и кипения соответствующих простых веществ, в очень больших межатомных расстояниях в кристаллах, в неустойчивости их многих соединений (устойчивые соединения инертных элементов удается получить лишь с активнейшим из элементов — фтором и его производными). До 1962 г. не было синтезировано ни одно соединение инертных элементов и они считались химически инертными в буквальном смысле слова. Сейчас известны сотни соединений тяжелых инертных элементов криптона Кг, ксенона Хе и радона Rn. Большую часть изученных соединений составляют соединения ксенона. Химия инертных элементов быстро развивается. Таким образом, название описанных элементов потеряло первоначальный смысл. [c.108]

    Ранее [1] нами были определены термодинамические характеристики растворения гелия, неона и аргона в широком ряду органических растворителей. В настоящей работе, по данным растворимости [2] нами рассчитаны термодинамические характеристики растворения и образования криптона, ксенона и радона в следующих органических растворителях углеводородах, предельных одноатомных спиртах, алифатических ке-тонах, альдегидах, одноосновных кислотах, циклогексане и его производных, в ароматических углеводородах, в производных бензола и в ароматических аминах при температуре 25°С. Термодинамические ха-)актеристики рассчитывались по формулам, приведенным в работе [З]. Три расчете в качестве стандартного использовалось состояние благородного газа при парциальном давлении его, равном 1 атм, и концентрации в растворе при моляльности, равной единице. [c.94]

    Вещества, построенные из атомов инертных элементов, — благородные газы (гелий, неои, аргон, криптон, ксенон, радон). Характеризуются одноатомным состоянием, летучестью и электрической проводимостью особого рода, которая существенно отличается от металлической и может быть названа скользящей". В твердом состоянии образуют кристаллические решетки молекулярного типа (хотя в узлах их находятся атомы), отличающиеся крайней непрочностью. [c.111]

    При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, процесс отвердевания наблюдается в чистом виде. Молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, связанные между собой только слабыми ненаправленными межмолекулярными связями. Именно поэтому молекулярные кристаллы имеют настолько плотную упаковку, насколько позволяет конфигурация молекул. Заметим, что с химической точки зрения и этот, казалось бы, чисто физический процесс цред-ставляет собой процесс синтеза, так как его продуктом является твердое молекулярное соединение — новое вещество, образующееся из молекул исходных веществ. Чисто межмолекулярные взаимодействия представляет собой кристаллизация неона, аргона, криптона, ксенона и радона. Хотя их кристаллы состоят из атомов, тем не менее это настоящие молекулярные кристаллы образующие их молекулы одноатомны. Понятно, что между такими молекулами не может быть никакого другого взаимодействия, кроме ван-дер-ваальсовского.  [c.21]


    У элементов подгруппы криптона, как и у типических р-элементов VIII группы, в валентном слое имеется по восемь электронов, поскольку в атомах все валентные орбитали заполнены в обычных условиях молекулы инертных газов одноатомны (см. стр. 92). [c.612]

    Для выяснения зависимости значений коэффициента / от температуры Одноатомных газов Зайцевой, [Л.2-26] было проведено экспериментальное исследование теплопроводности шести одноатомных газов. Ею экспериментально была определена теплопроводность гелия, неона, аргона, криптона, сенона и паров ртути при давлениях от 50 до 500 мм рт. ст. и температурах от О до 500° С. Установка Зайцевой исключала необходимость больших поправок к экспериментальным значениям в отличие от данных Каннулика и Кармана [Л. 2-27], уже при 300 С вводивших по правки до 20% к экспериментальным значениям. Обработка экспериментальных данных теплопроводности Зайцевой показала, что зависимость теплопроводности указанных шести одноатомных газов от температуры описывается уравнением [c.134]

    По теплопроводности одноатомных газо для гелия— данные Джонстона и Грилли [Л. 3-3] при низких температурах, данные Зайцевой [Л. 3-4] от О до 500° С. Для неона и аргона при низких температурах из [Л. 3-5] но основании обработки данных Эйкена, Вебера, Шварце и других, а при температурах выше 0° С—данные Зайцевой. Для криптона, ксенона и ртутного пара — данные Зайцевой от О до 522° С. Из данных Варгафтика [Л. 3-2] взяты теплопроводность водяного пара в интервале температур от О до 880° С, воздуха от О до 770° С. углекислого газа от О до 607° С, азота от О до 544° С, кислорода от О до 539° С и водорода от О до 562° С. [c.149]

    Величину наиболее часто применяемых адсорбатов находят, исходя из их плотности в йуидком и твердом состояниях или по адсорбционным данным [21, 22]. В настоящее время широко применяемым адсорбатом для определения удельной поверхности является азот. Однако наличие заметного постоянного квадрупольного момента молекул азота служит причиной расхождений при измерениях поверхности по адсорбции азота и других газов, например криптона, аргона. Так, М. Г. Кага-нер [22] предлагает взять в качестве исходной величины площадь молекулы одноатомного аргона, не зависящую от вида поверхности, вычисленную по плотности жидкости при 90° К и равную 14,4 А 2. [c.390]

    В 1898 г. после открытия аргона Рамзай и Трейверс при фракционной перегонке больших количеств жидкого воздуха открыли неон, ксенон и криптон Другой важный представитель благородных газов, гелий был обнаружен в 1.868 г. спектроскопическим путем в солнечной хромосфере астрономом Жанссеном во время затмения в 1869 г. Локьер и Франкланд подтвердили это наблюдение, в 1882 г. Пальмиери обнаружил гелий в некоторых горных породах и вулканической лаве Везувия в 1889 г. Гиллебранд нашел его в газах — включениях в уранините, и, наконец, в 1895 г. Рамзай и Клеве независимо друг от друга выделили гелий из газов, содержащихся в клевеите, разновидности урановой смоляной руды. Таким образом была открыта группа из пяти благородных газов гелий (ат. вес 4,003), неон (20,183), аргон (39,944), криптон (83,7) и ксенон (131,3), молекулы которых одноатомны и неспособны вступать в соединения К этой группе благодаря Резерфорду и Содди прибавилась затем эманация, или радон (Еш или Кп = 222). [c.277]

    Газообразный криптон в 2,87 раза тяжелее воздуха, а жидкий — в 2,14 раза тяжелев воды. Криптон превращается в жидкость при —153,2° С, а уже при — 157,1° С он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно у этих атомов замкнутые , целиком заполненные электронные оболочки. Молекула криптона одноатомна. [c.156]


Смотреть страницы где упоминается термин Одноатомный криптон Кг: [c.22]    [c.118]    [c.119]    [c.235]    [c.415]    [c.274]    [c.415]    [c.165]    [c.373]    [c.152]   
Смотреть главы в:

Термодинамические свойства индивидуальных веществ том второй -> Одноатомный криптон Кг




ПОИСК





Смотрите так же термины и статьи:

Криптон



© 2025 chem21.info Реклама на сайте