Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дислокации и рост кристаллов

Рис. 16.5. Развитие спирального роста кристалла, вызванное единичной винтовой дислокацией Рис. 16.5. Развитие <a href="/info/386167">спирального роста кристалла</a>, вызванное единичной винтовой дислокацией

    Рассмотрим массообмен между частицей и сплошной средой, когда сопротивление переносу сосредоточено в самой частице. В этом случае изменением концентрации во внешнем потоке можно пренебречь. Такие задачи будем называть внутренними. Так, если к внешним задачам относили определение коэффициентов массоотдачи, то к внутренним — нахождение кинетических коэффициентов роста и зародышеобразования кристаллов. Вид кинетических коэффициентов определяется из теорий роста, экспериментальных данных. Все существующие теории роста кристаллов можно разделить на три категории [33] 1) теории, описывающие рост кристаллов с чисто термодинамической точки зрения, имеющие дело с идеальными кристаллами (без дефектов решетки) 2) дислокационные теории, учитывающие, что источником ступеней при росте плоскостей кристалла являются дислокации 3) теории, описывающие рост кристалла, как кристаллохимические реакции на поверхности. [c.262]

    При захвате примеси растущим кристаллом она может войти в узлы кристаллической решетки, образуя твердый раствор замещения, или в междоузлия, образуя твердый раствор внедрения, а также включения, состоящие из взвешенных частиц. В кристалле при этом будут возникать напряжения или деформация, являющиеся причиной образования дислокации. Это является причиной изменения и механизма и скорости роста кристаллов, что часто сопровождается изменением формы кристаллов (но не типа кристаллической решетки), о чем уже говорилось выше. [c.110]

    Теория дислокаций впервые позволила объяснить (помимо пластичности) такие явления, как рост кристаллов и их испарение, кинетику различных процессов в твердых телах и др. Мы вернемся в этому вопросу в гл. ХУП. [c.281]

    Франк объяснил это противоречие, предположив, что рост кристалла определяется винтовыми дислокациями. На рис. XIV. 11 показан выход на поверхность кристалла винтовой дислокации. [c.282]

Рис. XIV. 1. Схема роста кристалла на ос-1(ове винтовой дислокации Рис. XIV. 1. <a href="/info/1133012">Схема роста</a> кристалла на ос-1(ове винтовой дислокации

    Винтовые дислокации облегчают рост кристалла, давая возможность атомам садиться на поверхностную ступеньку. Дислокации влияют на раскалывание кристаллов и другие механические свойства. Наличие дислокаций и взаимодействия между ними объясняет наблюдаемое для некоторых кристаллов явление деформационного упрочения, которое состоит в том, что при увеличении приложенного напряжения пластическая деформация возрастает. [c.194]

    В соответствии с теорией дислокаций в процессе роста кристалла, особенно при массовой кристаллизации, его решетка искажается. Температурные градиенты у поверхности кристалла, возникающие вследствие неизотермичности кристаллизации, адсорбция примесей и другие причины приводят к появлению дислокаций, дефектов поверхности грани, которая оказывается не идеально плоской, а имеющей неровный рельеф. При кристаллизации из растворов, из газов, при образовании твердой фазы в результате химической реакции рельеф поверхности кристалла может иметь точечные нарушения, но часто приобретает форму плоских или винтовых, спиральных, уступов (ступенек), имеющих молекулярные или немного большие размеры. При росте кристалла, образующие его частицы присоединяются к ступеньке (к ее ребру), в результате чего спираль закручивается вокруг некоторого центра. Это приводит к появлению новых слоев. [c.246]

    На размеры и форму образующихся кристаллов сильно влияют находящиеся в растворе примеси, особенно поверхностно-активных веществ. Некоторые из них специально вводят в качестве модификаторов для получения крупнокристаллических продуктов. Например, укрупнения кристаллов КС1 достигают добавкой в раствор малых количеств (10 —10" %) алифатических аминов, полифосфатов и др. Механизм этого явления изучен недостаточно. Предполагают, что введение добавок 1) увеличивает метастабильное пересыщение раствора и соответственна скорость роста кристаллов, не повышая скорости образования зародышей 2) уменьшает скорость появления зародышей, влияя на поверхностное натяжение и на энергию активации их образования 3) вследствие адсорбции на поверхности кристаллов увеличивает число дислокаций на ней, что ускоряет их рост и др. [c.250]

    Дислокации образуются в процессе роста кристаллов, при пласти-ческой деформации, при наличии больших температурных градиентов. Выявление дислокационных искажений методом травления основано на том, что растворение начинается особенно легко в местах выхода дислокаций на поверхность. Здесь значительно снижается энергия отрыва атома с поверхности твердого тела. Скорость травления в мес- [c.107]

    Подробные исследования роста кристаллов были предприняты Р. Каишевым на примере электрокристаллизации серебра. Наблюдения показали, что некоторые осадки отличаются спиральной симметрией и при нарушениях или сдвигах в кристаллической решетке кристаллизация сопровождается спиральными движениями ступени роста (рис. 95). Подобные представления о сдвиговой дислокации в кристаллической решетке объясняют возможность спирального роста граней кристаллов, когда он может происходить непрерывно, без образования двумерных зародышей. Причиной спирального роста грани является такое нарушение структуры кристаллической решетки, при котором ступень роста имеется лишь на части грани толщина этой ступени постепенно уменьшается к середине грани. При росте такая ступень не исчезает, дойдя до конца грани, как на идеальном кристалле, а все время поворачивается, образуя на грани все новые слои. [c.396]

    Рост из расплава. При росте кристалла из расплава движущей силой является относительное переохлаждение 8Т/Т = = (7 — То)/Т о на фронте кристаллизации. Поверхностная шероховатость кристалла, контактирующего с собственным расплавом, а также величина переохлаждения и определяют в основном вид зависимости скорости роста кристалла от 8Т/Т. Как показывает расчет, скорость роста кристалла может зависеть от ST/T линейно (модель нормального роста все поверхностные узлы активны), квадратично (модель дислокационного роста активными центрами являются, например, винтовые дислокации), экспоненциально (рост кристалла из расплава происходит по механизму двумерного зарождения). [c.484]

    Известно, что рост кристаллов тесно связан с винтовыми дислокациями. Однако, исследования кинетики испарения кристалла путем удаления спиральных слоев, высота которых соответствовала вектору Бюргерса порядка 2-10 см [41], показали, что можно пренебречь влиянием энергии деформации решетки в точке выхода на поверхность винтовой дислокации на скорость испарения. Авторы работы [41 ] считают, что расстояние между ступенями, порожденными винтовой дислокацией, быстро растет, достигая такой же величины, как и в случае, когда единственным источником моноатомных ступеней является край кристалла. Поэтому на таких дислокациях ямки травления не образуются. [c.49]


    Пассивационные и концентрационные эффекты играют важную роль в процессах роста кристаллов, однако они не исчерпывают всех причин, вызывающих отклснение реальной картины кристаллизации от идеализированной модели Фольмера. Отклонения от модели Фольмера объясняются и нарушениями идеальной структуры кристалла, т. е. дефектами кристаллической решетки, и в первую очередь появлением участков с расположением структурных элементов, отличным от их расположения в идеальной решетке данного кристаллического тела, так называемых дислокаций. [c.338]

    Линейные дефекты структуры называются дислокациями. Простейший вид днслокации — краевая дислокация. Она представляет собой край одной из атомных плоскостей, обрывающейся внутри кристалла. Дислокации возникают как в процессе роста кристаллов, так и при местных механических, тепловых и других воздействиях на кристаллы (см., например, рис. 142, а, б на стр. 538). На рис. 02 изображена краевая дислокация (линия АВ), возникшая в результате сдвига части кристалла по плоскости АВСО в направлении, указанном стрелкой. [c.163]

    ГЧ УЛьпые кристаллы. Кристаллы, состоящие из соверщенно оди-нaк JBыx элементарных ячеек, называются идеальными. Образующиеся в реальных условиях кристаллы могут несколько отличаться от кристаллов идеальных. Реальные кристаллы построены из некоторого числа блоков правильного кристаллического строения, расположенных приблизительно параллельно друг другу, ио все же несколько дезориентированных. Это явление называется мозаичностью структуры кристаллов, которая ведет к возникновению дислокаций, т. е. линейных, а также поверхностных и объемных дефектов структуры, образующихся 1з процессе роста кристаллов или же при пластической деформации. Помимо дислокаций в реальных кристаллах образуются также участки неупорядоченности, локализованные обычно около отдельных узлов решетки, — так называемые плоские дефекты. [c.72]

    При повыщенных температурах кристаллизация парафина может происходить либо в результате образования твердой фазы из расплавов, либо вследствие выделения парафина из раствора высокой концентрации. Поэтому расплавы парафина, богатые парафином гачи, отеки и другие подобные им продукты кристаллизуются с образованием кристаллов гексагональной сингонии. Рост кристаллов гексагональной сингонии и ромбической сингонии показан на рис. 30 и 31. Кристаллы парафина ромбической сингонии развиваются из винтовых дислокаций по спирально-ступенчатому механизму [112, 116]. [c.95]

    Из макроступеней развиваются макроспирали, обнаружение которых в микроскоп служит доказательством роли винтовых дислокаций в процессах роста кристаллов. Конец микроспирали можно рассматривать как сферу с очень маленьким радиусом кривизны (порядка 10 м). Диффузия к такой сфере оказывается очень быстрым процессом (см. 37). Если стадия разряда на конце спирали протекает о большой скоростью, то вершина спирали начинает расти быстрее, чем остальная часть кристалла. Это является одной из причин образования дендритов при электроосаждении металлов из водных растворов и расплавов. В процессе электролитического роста кристаллов большую роль играет адсорбция органических веществ, которые специально добавляются в раствор или присутствуют в нем как посторонняя примесь. [c.319]

    Как предполагалось, на поверхности кристалла имеются лишь ступени атомной высоты, т. е. микроступени. Нередко происходит процесс концентрирования и укрупнения микроступеней, приводящий к образованию видимых макроступеней (иногда толщиной более 1000 А). Механизм роста макроступеней изучался в работах П. Д. Данкова, К. М. Горбуновой и сотр. Из макроступеней развиваются макроспирали, обнаружение которых в микроскоп служит доказательством роли винтовых дислокаций в процессах роста кристаллов. [c.334]

    Рост кристаллов из паров также не может быть объяснен без привлечения представлений о дислокациях. Этот процесс в растворах происходит путем образования двумерных зародышей (см. гл.XVIII). [c.281]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

Рис. 45. Схема кристалла Рис. 46. Последовательные стадии развития кубической системы с дис- спирального роста кристалла, вызванного локацией. дислокаци . Рис. 45. <a href="/info/916454">Схема кристалла</a> Рис. 46. <a href="/info/9312">Последовательные стадии</a> развития <a href="/info/70759">кубической системы</a> с дис- <a href="/info/386167">спирального роста кристалла</a>, вызванного локацией. дислокаци .
    Влияние дислокаций и других дефектов сказывается не только на росте кристалла и его механических свойствах, но и на электрических свойствах полупроводников, так как вызывают рассеяние носителей заряда. Дефекты решетки сильно влияют на оптические свойства некоторых кристаллов. Например, вакансии в анионной подрешетке галидов щелочных металлов являются центрами притяжения электронов. Когда в места таких вакансий попадают электроны, то возникают так называемые F-центры, вследствие чего бесцветные прозрачные кристаллы (Na l и др.) приобретают синюю или пурпурную окраску из-за поглощения света электронами, захваченными де ктами решетки. [c.146]

    Рнс. IX.и. Схема роста кристалла [[а ос[[ове пинтовой дислокации [c.199]

    ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ, переход в-ва из ионизиров. состояния в р-ре или расплаве в кристаллическое в результате электрохим. р-ции. Лежит в основе всех процессов электроосаждения металлов, а также формирования слоев оксидов и труднорастворимых соед. на аиоде (напр., при образовании электролитич. защитно-декоративных покрытий, в произ-ве хпм. источников тока). Отличается от обычной кристаллизации из пара или р-ра тем, что построе-ншо кристаллич. структуры предшествует перенос заряда с электрода на ион или оба этн акта протекают одновременно. Возникновение зародышей новой фазы при Э. требует определ. пересыщения, к-рое определяется перенапряжением на электроде. Чем выше перенапряжение, тем большее число зародышей возникает в единицу времени на данной площади. Зародыши разрастаются в результате послойного роста граней. Процесс может идти с образованием двумерных зародышей илн по закону слоисто-спирального роста на винтовых дислокациях (см. Рост кристаллов). В результате линейного роста кристаллов происходит их слияние с образованием сплошного слоя электролитич. покрытия. [c.698]


Библиография для Дислокации и рост кристаллов: [c.107]   
Смотреть страницы где упоминается термин Дислокации и рост кристаллов: [c.340]    [c.141]    [c.162]    [c.319]    [c.333]    [c.334]    [c.319]    [c.250]    [c.186]    [c.128]    [c.134]    [c.162]    [c.319]    [c.200]    [c.510]    [c.699]   
Смотреть главы в:

Химия твердого состояния -> Дислокации и рост кристаллов




ПОИСК





Смотрите так же термины и статьи:

Дислокация

Рост кристаллитов

Рост кристаллов



© 2024 chem21.info Реклама на сайте