Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные особенности действия излучения на полимеры

    А. ОСНОВНЫЕ ОСОБЕННОСТИ ДЕЙСТВИЯ ИЗЛУЧЕНИЯ НА ПОЛИМЕРЫ [c.176]

    А. Основные особенности действия излучения на полимеры 177 [c.177]

    Лиза полимера или сами изменять свои свойства под действием излучения. В связи с этим анализ особенностей технологии производства, а также свойств полиэтилена, являющегося основным исходным продуктом для радиационно-модифицированных материалов, должен предшествовать разработке этих материалов. Выбор других компонентов проводится с учетом эксплуатационно-технологических требований к разрабатываемому материалу, индивидуальных свойств вводимых компонентов, а также их возможного влияния друг на друга и на материал в целом на различных стадиях технологического процесса его изготовления и переработки. При этом в состав материала могут вводиться компоненты, которые существенно повышают общую эффективность радиационной модификации материала, сами не придавая ему каких-либо новых ценных качеств. [c.71]


    Из волокнообразующих полимеров деструкции под действием ионизирующих излучений подвергается целлюлоза и ее производные. Полиамиды и полиэфиры при облучении в основном сшиваются. Деструкция целлюлозы протекает главным образом за счет разрыва 1,4-ацетальной связи при этом образуются карбоксильные группы. Влажные целлюлозные волокна, особенно в присутствии кислорода воздуха, разрушаются наиболее быстро. Облученная ацетилцеллюлоза используется для получения привитых сополимеров (например, с акрилнитрилом), так как свободные радикалы сохраняются в ней достаточно долго и после облучения. [c.246]

    При сопоставлении основных классов эпоксидных смол, рассмотренных выше, и полимеров на их основе можно отметить следующее. Простые ДГЭ диана, в молекуле которых ароматические и алифатические звенья сочетаются с полярными эпоксидными, гидроксильными и эфирными группами, характеризуются низкой усадкой при отверждении и хорошей адгезией к различным материалам при комнатной и повышенных температурах. Получаемые полимеры отличаются достаточно высоким сопротивлением ударным нагрузкам, устойчивостью к действию многих агрессивных сред и воды, хорошими диэлектрическими свойствами. Однако их тепло- и атмосферостойкость сравнительно невысоки, особенно в условиях воздействия ультрафиолетового излучения, а диэлектрические показатели заметно ухудшаются при нагревании. [c.28]

    Полимерные углеводороды, состоящие из ароматических звеньев, особенно устойчивы к радиационным воздействиям. Очевидно, бензольные кольца способны поглощать значительную часть излучения без разрыва связей. Если бензольное кольцо входит в состав полимера в виде бокового заместителя, то его защитное действие несколько ослабевает происходит частичное отщепление атомов водорода от основной цепи и соединение последних друг с другом. Этот процесс протекает очень медленно и стойкость к радиации, например, полистирола в 80—100 раз больше стойкости других поли- [c.105]

    Полимерные ароматические углеводороды особенно устойчивы к радиационным воздействиям, так как бензольные кольца способны поглощать значительную часть энергии излучения. Если бензольные кольца не входят в состав основной цепи макромолекулы, а являются замещающими группами, то их защитное действие проявляется слабее, и радиолиз вызывает отрыв атомов водорода, особенно а-водорода, от алифатических групп. Деструкция полимеров с ароматическими заместителями протекает очень медленно. Например, стойкость полистирола к радиационному воздействию в 80—100 раз выше стойкости полиэтилена. Каждое бен-, зольное кольцо защищает от деструкции от 4 до б соседних звеньев, не содержащих ароматических групп. [c.221]


    Встречающиеся в природе высокополимеры можно разделить на два класса полимеры, изменения которых под действием излучения высокой энергии представляют только технический или академический интерес, и полимеры, радиационные изменения которых имеют первостепенное значение в области биологии и в отношении благополучия всего живого, в особенности человека. В первом классе находятся в основном полисахариды целлюлоза и ее производные, крахмал, декстран, пектины и т. п. полимеры. К этому классу можно отнести также некоторые белки, например коллаген и кератин, которые и.меют только структурные функции, а также уже рассмотренные (гл. VIII) натуральный каучук и гуттаперчу. Ко второму классу относятся нуклеиновые кислоты, или, более правильно, неуклеопро-теиды, котО рые образуют генетическое вещество клеточного ядра, а также белки, имеющие метаболическую функцию, например гемоглобин, миоглобин и ферменты. Небольшие дозы излучения, например 500—1000 р, почти не влияющие на большинство полимеров, оказывают очень сильное воздействие на природные полимеры второго класса, приводя к серьезным для организма и даже смертельным последствиям. В настоящее время детальные данные о характере воздействия излучения высокой энергии па протеины почти полностью отсутствуют, несмотря на накопление значительного количества фактического материала, касающегося суммарного действия излучения. [c.204]

    Основной реакцией, протекающей при действии ионизирующих излучений на тетрафторэтилен, является реакция нолимеризации. В результате исследования радиационной полимеризации тетрафторэтилена под действием Р- и 7-излучений в жидкой и газовой фазах и в различных средах были обнаружены две особенности этого процесса во-первых, необычайная легкость полимеризации тетрафторэтилена, протекающей с высоким радиационно-химическим выходом, достигающим 10 молекул на 100эб, и, во-вторых, длительный эффект последействия, характеризующийся высокой скоростью пост-полимеризации. Способность тетрафторэтилена полимеризоваться под действием излучения с чрезвычайно большим радиационно-химическим выходом позволила осуществить полимеризацию этого мономера в газовой фазе при атмосферном давлении и температуре 20°С и в жидкой фазе при температуре —78°С. Полное превращение мономера в полимер при —78° С и мощности дозы 10 рд/сек достигается в течение 3 час. При повышении температуры до 20°С скорость полимеризации резко возрастает. Полное превращение мономера в полимер в этих условиях достигается в течение 20 мин. Вычисленное значение радиационно-химического выхода С при 20° С и мощности дозы 10 рд/сек составляет 7-10 молекул на 100 эв и является наибольшим из всех известных в настоящее время выходов радиационно-химических реакций. [c.110]

    Соседние с карбонильными группами связи особенно чувствительны к действию излучения. Например, основными газообразными продуктами при радиолизе пропионового альдегида являются окись углерода, водород и этан [Р9], в то время как ацетон дает окись углерода и этан [А52]. Кетоны также дают водород как основной продукт. Другим важным эффектом является образование полимера [М40]. Выходы газообразных продуктов при у-радиолизе жидких кетонов приведены в табл. 31. Выход метана из ацетона почти полностью подавляется в присутствии ДФПГ [А52]. Это показывает, что метан образуется, [c.135]

    Резины из наиболее стойких каучуков работоспособны при облучении дозой 5 10 ра( . Основным признаком деструктирую-щихся полимеров является наличие в их цепи четвертичного атома углерода (углеродного атома, не имеющего водорода). В связи с этим наименее стойкими к действию ионизирующих излучений являются резины на основе бутилкаучука. Расположить остальные полимеры в определенный ряд по их радиационной стойкости затруднительно в связи с тем, что на это свойство влияет состав резин. Кроме того, в зависимости от измеряемого показателя ряды эти могут быть разными. При действии радиации на напряженные резины наблюдается химическая релаксация напряжения и накопление остаточной деформации. С меньшей скоростью эти процессы протекают у СКС-ЗО и СКН-26 (сравнительно с НК и СКБ и особенно с бутилкаучу-ком и СКЭП). Если резина работает в среде воздуха, то образующийся озон при наличии растягивающих напряжений вызывает растрескивание резин. Радиационная стойкость резин несколько повышается при введении в них ингредиентов с ароматическими кольцами (ароматических мягчителей, противо-старителей — производных фенилендиамина). [c.178]

    Для знакомства с основными особенностями цепных реакций мы применим тот же метод мысленного эксперимента, что и в других разделах этой главы. Допустим, проводится изучение процесса полимеризации мономера — метилметакрилата под действием ультрафиолетового излучения. Сам факт существования подобного процесса описан в литерату]ре, но предположим, что нам неизвестен его механизм. Методика эксперимента такова. Жидкий бесцветный метилметакрилат под вакуумом загружают в кварцевую ампулу, которую затем запаивают. Ампулу облучают ультрафиолетовым светом с помощью ртутной лампы. Полимер растворяется в мономере, т. е. реакция протекает гомогенно. За квшетикой образования полимера Можно следить, например, по увеличению вязкости раствора. Применим для анализа механизма процесса известные нам положения кинетического метода. Прежде всего необходимо накопить эксперимеи-тальный материал. Попытаемся найти ответ на вопрос, что, собственно, вызывает полимеризацию. [c.40]


    Данную главу книги не следует рассматривать как исчерпывающий обзор. Приведенные и разбираемые в ней примеры служат лишь иллюстрациями отдельных реакций, имеющих место в химии белка. Авторы пытались отобрать те факты, которые, по их мнению, наилучшим образом иллюстрируют рассматриваемые специфические реакции. В особенности внимание авторов концентрировалось на примерах, в которых имеются совершенно бесспорные доказательства природы и механизма рассматриваемых реакций. Основное внимание авторов было направлено на особый отбор и организацию представленного ниже материала на концентрирование внимания на возможных механизмах рассматриваемых реакций на разработанный авторами подход к объяснению зависимости между стерическими факторами и реакциями основной цепи бе.чков па обобщение современных данных, относящихся к различным аспектам получения привитых сополимеров на основе белков кроме того, кратко рассмотрены также некоторые интересные аспекты действия излучения высоких энергий на эти природные полимеры. [c.331]

    Ускоренное атмосферное старение. Основным фактором, вызывающим старение многих полимерных мaтepиaJЮв в атмосферных условиях, является солнечный свет, поэтому почти во всех методах, воспроизводящих эти условия, осуществляется световое воздействие на полимеры. Так как кванты света разной длины волны обладают неодинаковой энергией, то действие их на полимер может быть качественно отличным. Излучение, наиболее близкое к солнечному, дает ксеноновая лампа, которая используется в установках "Ксенотест". Широко применяются также ртутные и угольные дуговые лампы, а также их различные сочетания. За счет большой доли энергии, падающей на ультрафиолетовую область спектра (особенно при использовании ртутных ламп), световое старение идет очень интенсивно, однако его результаты часто не коррелируют с данными естественной экспозиции. [c.131]

    При хранении и эксплуатации полимеров, полимерных материалов и изделий постепенно ухудшаются их физико-мехаии-ческие свойства. Такое необратимое изменение свойств во времени называется старением. Основной причиной старения полпмеров является действие кислорода воздуха. Кислород наряду с различными активирующими факторами (свет, тепло, ионизирующие излучения и др.) вызывает в полимерах сложные процессы, в том числе реакции окисления, деструкции, струк-Т фирог ания и т. п. Особенно велика роль процессов окисления при старении эластомеров, так как в состав их макромолекул обычно входят реакциоиносиособные двойные связи и сс-метиленовые группы. С целью предотвращения вредного влияния кислорода в каучуки, как и вообще в полимеры, вводят различные добавки стабилизаторов — ингибиторов окисления. [c.28]

    Резины, стойкие к световому старению. В основе процессов светового старения лежат фотохимические реакции, интенсивность которых зависит от длины волны света особенно энергично они протекают под действием УФ-излучения. Инфракрасная часть излучения в основном приводит к нагрёва-нию полимера и ускорению теплового старения. Нагревание и кислород воздуха резко увеличивают скорость фотохимических реакций. О влиянии состава резины на световое старение данных очень мало. Можно считать, что с увеличением ненасыщенности-полимера наблюдается понижение стойкости к световому старению. Введение полимер атомов С1 тоже понижает светостойкость. Вулканизаты при освещении окисляются медленнее, чем каучуки. Сажи отражают УФ-излучение (во всем интервале длин волн) [c.193]


Смотреть страницы где упоминается термин Основные особенности действия излучения на полимеры: [c.183]    [c.85]    [c.18]   
Смотреть главы в:

Радиационная химия органических соединений -> Основные особенности действия излучения на полимеры




ПОИСК





Смотрите так же термины и статьи:

Действие основное

Излучение полимеров

Полимеры действие излучений



© 2024 chem21.info Реклама на сайте