Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Различные кинетические положения

    Инженерный кинетический расчет адсорбционной аппаратуры различного типа с учетом рассмотренных положений должен отражать влияние на адсорбционные процессы (изотермические и неизотермические) основного физического процесса — диффузии в зерне адсорбента. Один из вариантов инженерного метода расчета кинетики адсорбции может быть основан на использовании уравнения диффузии в зерне адсорбента [c.241]


    Положение и форма газохроматографических пиков дают не только информацию, необходимую для полной аналитической характеристики веществ. Положение па хроматограмме пика вещества, элюированного из данной неподвижной фазы, определяется основными термодинамическими закономерностями, форма же пика отражает различные кинетические параметры. Поэтому по положению и форме пика можно определять термодинамические и кинетические константы соответственно, и газовая хроматография, следовательно, применима не только как аналитический метод, но также как метод измерения физико-химиче-ских параметров. Предметом данной главы является описание возможностей и границ такого рода применения хроматографии. [c.327]

    Согласно структурно-анионной кинетической концепции Н. М. Бобковой, силикатное стекло необходимо рассматривать как совокупность различных по составу и строению кремнекислородных комплексов, ио с преобладанием тех структурных группировок, которые отвечают наиболее термодинамически устойчивому соединению при переходе данного состава в расплавленное и стеклообразное состояние и находятся в соответствии с положением фигуративной точки состава на диаграмме состояния системы. Силикатным стеклам присуща микрогетерогенная структура как следствие неоднородности исходного расплава, предопределяемой кинетическими особенностями процесса стеклообразования. Структурная дифференциация в расплаве вызвана несовместимостью по структурно-геометрическим условиям образующихся кремнекислородных комплексов и определяется кристаллохимическими параметрами входящих в состав стекла катионов. С повышением величины [c.200]

    Несмотря на различный механизм превращения парафиновых углеводородов на всех рассмотренных катализаторах, для них наблюдается общность кинетических закономерностей и торможение реакции изомеризации парафиновых углеводородов избытком водорода. Для всех катализаторов зависимость скорости реакции от парциального давления водорода носит экстремальный характер после достижения определенной концентрации водорода на поверхности катализатора. Величина и положение максимума зависят от типа катализатора, температуры и молекулярной массы парафинового углеводорода. [c.35]

    Последовательные (многоступенчатые, или к о н с е к у т и в н ы е) реакции — это реакции с промежуточными стадиями, например реакция АВС. В этих реакциях вещество В является промежуточным веществом в процессе получения конечного продукта С. На рис. 142 показаны кривые изменения во времени количеств веществ А, В и С (сд, Св и сс). Положение таких кривых для различных последовательных реакций неодинаково, так как оно зависит от соотношения скоростей этих реакций. Чем больше kl/ko, тем выше лежит максимум кривой для вещества В и тем ближе он к моменту начала реакции. В начале реакции вещество С вообще нельзя обнаружить. Это — скрытый период, который называется периодом индукции. Кинетический расчет таких реакций очень сложен. [c.328]


    Главная особенность гетерогенных сплавов определяется, содержанием в их структуре фаз, различающихся по химическому составу и кристаллографическим параметрам. Эти фазовые составляющие, как правило, отличаются и по многим физическим и физико-химическим характеристикам адсорбционным, строению двойного электрического слоя на границе фаза — раствор, кинетическим параметрам окислительно-восстановительных реакций, потенциалам пассивации и т. д. Из-за этого коррозионное поведение гетерогенных сплавов во многом зависит от неоднородности их структуры. В данном случае неоднородность носит принципиально макроскопический характер в отличие от однофазных систем, для которых принимается микронеоднородность. (на уровне активных центров), связанная с различным энергетическим положением отдельных атомов на поверхности [12]. [c.152]

    Для молекулы этана потенциальный барьер вращения сравнительно невелик, и при комнатной температуре кинетической энергии достаточно для осуществления свободного вращения. Поэтому этан фактически представляет собой смесь молекул, атомы которых могут зани.мать различное пространственное положение, т. е. является смесью поворотных изомеров. Переход из одного положения в другое осуществляется 10 раз в секунду, т. е. очень быстро, поэтому выделить молекулы этана с разным расположением, атомов практически невозможно. Однако спектроскопическими методами можно доказать реальность их существования. [c.59]

    Были изучены амальгамы серебра, так как они являются сплавами двух металлов с различными кинетическими свойствами (растворение серебра в цианистых растворах протекает в диффузионном режиме, а ртути — в кинетическом) и различным положением в ряду напряжений. Эти металлы образуют, кроме того, интерметаллические соединения. Было интересно выяснить, свойства какого из компонентов определяют кинетику растворения сплава. [c.141]

    В дальнейшем будем рассматривать только случайные колебания, учитывая при этом, что многие причины, действующие в различных или противоположных направлениях, создают много значений, колеблющихся около одного истинного. В этом случае многие причины, влияющие на результаты измерения, принять во внимание также безнадежно, как попытки описать положение всех молекул газа в некотором объеме в данный момент. Подобно тому, как при решении последнего вопроса кинетическая теория газов по Максвеллу обращается к статистическим методам, так и мы воспользуемся методами математической статистики (обязанными своим происхождением теории вероятностей) для корректирования отклонений результатов измерения от истинного значения. Знание этих [c.243]

    Классические работы Лебедева [185 —187 J по избирательному каталитическому гидрированию олефинов послужили отправной точкой для развития и применения этой реакции как метода установления строения непредельных соединений и анализа многокомпонентных смесей этиленовых углеводородов. В основу этого метода была положена различная прочность кратных связей у олефинов разного строения. Сопоставление кинетических кривых гидрирования многокомпонентных смесей олефинов неизвестного состава с кинетическими кривыми эталонных смесей олефинов позволило составить представление о строении компонентов анализируемых смесей. Принципиальные научные положения Лебедева о применимости избирательного каталитического гидрирования к решению структурных вопросов в области непредельных органических соединений были распространены нами на реакцию гидрогенолиза сераорганических соединении. Проведенные экспериментальные исследования по изучению закономерностей протекания реакции гидрогенолиза индивидуальных сераорганических соединений разного строения и их смесей полностью подтвердили наше предположение о возможности применения избирательного каталитического гидрирования для установления строения сераорганических соединений. [c.410]

    Вид зависимости интенсивности сплошного спектра торможения при одном и том же направлении, но для различных материалов (металлов) анода приведен на рис. 5.1. Как видно из графика, положение коротковолновой границы зависит не от природы тормозящего слоя (т. е. атомного номера металла антикатода), а от кинетической энергии и массы быстролетящей заряженной частицы (электрона). [c.113]

    Гели отличаются как от разбавленных растворов, в которых каждая коллоидная частица или макромолекула является кинетически индивидуальной частицей, так и от компактных коагулятов или твердых полимеров. По ряду свойств гели занимают промежуточное положение между растворами и твердыми полимерами. К гелям относятся различные пористые и ионообменные адсорбенты, ультрафильтры и искусственные мембраны, волокна мышечных тканей, оболочки клеток, хрящи, различные мембраны в организме. [c.371]


    Асфальтены, карбоиды и карбены получаются при продолжении этих реакций. Если конденсация протекает между различными молекулами, то молекулярный вес быстро меняется, и кислород или его эквивалент сера могут остаться в положениях, допускающих оксониевый тип соединений с хлоридами железа и ртути и с серной кислотой, как показал Маркуссон. Насколько высоким может быть молекулярный вес этих соединений и других членов этого ряда, еще недзвестно. Работа в лаборатории автора на неразогнанных нерастворимых в пентане осадках дала максимальное значение порядка 40 ООО. Другие расчеты дали величину порядка 140 000 [33]. Вышеизложенные предположения о роли кислорода могут быть подтверждены или опровергнуты тщательным кинетическим изучением распределение кислорода в конечных продуктах наблюдалось (Кнотнерусом (Knotnerus [34]). [c.543]

    За реакцией легко и удобно следить с помощью поляриметра, так как обмен связан с изменением положения Н и ОН по отношению к кольцу пира-нозы и, следовательно, с изменением удельного оптического вращения сахара. Эту реакцию долгое время использовали для проверки различных кинетических теорий. [c.480]

    Константы /Сь К2, Кг подгоняются по различным кинетическим данным. Так как остальные положения остались теми же, что и в методе ЛЭПС, то рассматриваемый вариант расчета получил название обобщенного метода ЛЭПС. [c.131]

    Как мы увидим дальше, динамический порядок, возникновение динамических структур и их упорядоченное поведение во времени возможны лишь вдали от равновесия. Линейная неравновесная термодинамика, кратко изложенная в этой главе, справедлива лишь вблизи равновесия. Ее основные положения выражаются соотношениями (9.51) и (9.80). Первое описывает сопряжение различных кинетических процессов вследствие отличия недиагональных коэффициентов Ьц 1 ]) от нуля, второе есть математическое выражение теоремы Пригожина о минимуме производства энтропии в стационарном состоянии. Несомненно, что в биологической открыто11 системе реализуются сопряженные процессы. Поэтому общая феноменологическая теория Онзагера — Пригожина позволяет объяснить важные биологические явления. Вопрос о применимости теоремы Пригожина к биологическим системам более сложен. Как мы видели, продукция энтропии а минимальна лишь в тех стационарных состояниях биологических систем, которые близки к равновесию. Эти системы описываются линейными соотношениями (9.51). Но в физике линейная зависимость реакций системы от воздействия, вызвавшего эту реакцию, есть всегда лишь первое приближение, справедливое для малых воздействий. В нашем случае малость означает малое удаление от равновесия. Для рассмотрения биологических систем и их динамической упорядоченности необходимо выйти за пределы линейной термодинамики. [c.327]

    Для молекулы этана потенциальный барьер сравнительно нев лик, и при комнатной температуре кинетическая энергия достато на для осуществлепия свободного вращения. Поэтому этан факт чески представляет собой смесь молекул, атомы которых мог] занимать различное пространственное положение. Переход из о, його положения в другое осуществляется ]0 раз в секунду, т. [c.80]

    С другой стороны, в 1927—1928 гг. Косселем и Странским был развит молекулярно-кинетический подход к рассмотрению кристаллизационных явлений. Важную роль в их теории играет так называемое положение на половине кристалла . Это положение является самовоспроизводимым если кристалл достаточно большой, то присоединение или отрыв одной частицы от этого полонгеиия не вызывает никаких изменений — ни геометрических, ни энергетических. При равновесии с окружающей средой вероятности присоединения и отрыва от положения на половине кристалла равны между собой и работа отрыва одной частицы равна энергии решетки кристалла (на одну частицу). Эти свойства положения полукристалла превращают его в своеобразный эталон сравнения вероятностей элементарных процессов отрыва и присоединения и к другим местам на поверхности кристалла. Таким образом, из данных определения работ отрыва частиц при различных их положениях на кристаллической поверхности выявились важные следствия о структуре разного типа кристаллографических граней как в состоянии равновесия, так и при их росте или растворении, т. е. была создана наглядная полуколичественная картина всего процесса кристаллизации. Из нее следует, что рост плотпоупакованных граней кристалла энергетически затруднен из-за необходимости предварительного образования стабильных в отношении дальнейшего роста двумерных комплексов. Однако на этом этапе внутренняя связь между трактовками Косселя — Странского и Фольмера оставалась невыясненной. [c.5]

    Сказанное, конечно, не означает, что урав1 ением (1.1) непременно описывается процесс, в котором все участки поверхности металла кинетически неразличимы и в равной степени подвержены взаимодействию с окислителем. Напротив, экспериментальные исследования последних 15 лет позволили выдвинуть идею об энергетической неоднородности поверх-нрсти металла й неравномерности ее растворения (по активным центрам), причем неоднородность присуща даже очень чистым металлам с решеткой, близкой к решетке термодинамически равновесного кристалла [12—14]. Неоднородность, как известно, обусловлена различным энергетическим положением поверхностных атомов, следствием которой является неодинаковая реакционная способность различных (микроскопически малых) участков поверхности металла., И все же процесс (1.1). в определенном отношении оказывается простым. С точки зрения термодинамики в этом процессе корродирующий металл имеет вполне определенное энергетическое состояние (объемное значение химического потенциала [c.5]

    Еще в ХУП1 в. Д. Бернулли объяснял свойства газов на основе теплового движения молекул. Согласно положениям кинетической теории газов, молекулы газа находятся в хаотическом движении. Поэтому в любой данный момент времени все молекулы имеют неодинаковую скорость и различную кинетическую энергию. Средняя кинетическая энергия оказывается при одних и тех же температурах для всех [c.96]

    Рассмотрим отдельную молекулу, состоящую из п атомов. Предположим, что ядра атомов можно фиксировать на произвольных расстояниях между ними. Ограничимся вначале рассмотрением простейшего случая, т. е. молекулы, состоящей из двух атомов. Для каждого значения междуядерного расстояния электроны могут иметь целы " ряд дискретных значенш энергии, что отвечает дискретр ым уровням изоли.рованных атомов. Эти уровни мы будем называть электронным энергетическими уровнями, хотя в величину энергии здесь входит и энергия кулоновскогО отталкивания ядер. Каждому из уровней соответствует некоторое расположение электронного облака полная энергия находится как сумма различных кинетических и потенциальных компонент энергии. Поскольку положение ядер фиксировано, их кинетическая энергия не входит в величину полной энергии уровня. Сосредоточим свое внимание на паинизшем элскгрон Ом энергетическом состоянии, так как для химии оно обычно представляет наибольший интерес. Каждому значе тю расстояния между ядрами соответствует оиределенное значение электронной энергии. Эксперимент и теория свидетельствуют о том, что при изменении расстояния между ядрами электронная энергия меняется по закону, изображенному графически на рис. 1. Когда ато.мы настолько удалены друг от друга, что не взаимодействуют, величина электронной энергии становится постоянной и равной сумме изолированных атомов. При малых расстояниях между ядрами энергия очень быстро растет вследствие сильного отталкивания одноименно заряженны.х ядер. При некоторой величине междуядерного [c.9]

    Таким образом, показано, что имеино термодинамические условия определяют надмолекулярную структуру образующегося полимера. Картину процесса полимеризации, подтвержденную различными кинетическими и другими данными, можно представить следующим образом. При [М]>[М] рост цепи происходит на растворенных активных центрах с образованием полимерной цепи в растворе и последующим ее выделением в отдельную фазу и кристаллизацией. При этом кристаллизация и образование полимерной фазы происходят в условиях как бы сильного переохлаждения (или пересыщения) и образуется полимер несовершенной структуры. При [М]< [М] рост цепи происходит нецосредст-венно на поверхности кристалла полимера, присоединяющаяся молекула мономера имеет возможность много раз присоединиться и оторваться от конца цепи до тех пор, пока не выберет наиболее выгодное положение, и, таким образом, получается совершен-ный монокристалл полимера. Этот же термодинамический подход можно распространить и на регулирование молекулярной структуры полимеров. Образование регулярного с точки зрения молекулярной структуры полимера, например синдиотактического или изотактического, или регулярного сополимера обычно является энтропийно невыгодным процессом. Это утверждение справед- [c.87]

    Рассмотрим вначале реакции внутримолекулярной изомеризации алкенильных радикалов, которые могут возникать в результате присоединения атома Н к молекуле пиперилена или из соответствующих алкенов (амиленов) путем отрыва атомов Н из различных положений в молекуле алкенов. Ввиду отсутствия экспериментальных данных невозможно получить решение обратной кинетической задачи и найти свойства активированного комп,декса, которые позволили бы по (2.22) рассчитать Л-факторы, приведенные в табл. 26.1. Поэтому для каждого типа реакций рассмотрены семь моделей активированного комплекса, различающихся геометрическими и механическими свойствами в области рвущейся и образующейся связи [321]. [c.208]

    Между температурой стеклования (размягчения) и энергией активации существует однозначная связь. Действительно, чем больше силы взаимодействия, тем более прочно закреплены на своих местах кинетические единицы, тем менее вероятны их переходы от одного равновесного положения в другое и тем больше. время релаксации, При заданном режиме охлаждения (нагревания) температурам стеклования (размягчения) различных полимеров соответствует одно и то же время релаксации т = onst. [c.92]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    В формуле (IV. 148) необходимо раскрыть понятие вероятности состояния системы. Как известно, знание макроскопического состояния системы, определяемого давлением, объемом и температурой, не позволяет судить о положении в пространстве и скорости отдельных молекул. Поэтому с молекулярно-кинетической точки зрения данное макроскопическое состояние можно реализовать большим числом различных способов, поскольку состояние каждой молекулы определяется шестью параметрами (три координаты положения и три составляющие скорости) и каждый из этих параметров изменяется непрерывно. При наличии N молекул состояние газа определяется, следовательно, 6М параметрами. Однако следует учитывать, что состояние газа зависит не от направления скоростей, а от кинетической энергии молекул и, кроме того, перестановка кинетических энергий молекул не изменит макроскопического состояния газа. Поэтому макроскопическое состояние коллектива N молекул, в сущности, зависит от меньшего числа параметров и может быть реализовано при помощи некоторого числа комплексий, характеризующих некоторое определенное распределение, при котором каждая различимая молекула имеет данную кинетическую энергию. Согласно представлению о молекулярном хаосе, все комплексии равновероятны. Очевидно, из двух заданных состояний то, которое может быть реализовано при помощи большего числа комплексий, имеет и большую вероятность. Число комплексий, позволяющих реализовать данное состояние, есть термодинамическая вероятность этого состояния или его статистический вес. Из этого определения следует, что термодинамическая вероятность отличается от математической, которая всегда меньше единицы. [c.129]

    Важно подчеркнуть, что каждая молекула полимерного субстрата фактически представляет собой цслы11 спектр субстратов (реакционных центров) с различной реакционной способностью. Это обстоятельство и отличает в первую очередь с точки зрения кинетики и механизмов реакций ферментативное превращение полимеров от превращения простых субстратов, имеющих только один реакционный центр на молекулу. При этом следует выделить два важней-щих положения, определяющих закономерности ферментативной деградации полимеров. Во-первых, при деградации одной молекулы полимерного субстрата (в особенности регулярного полимера) образуется много молекул конечного продукта, что может приводить к своеобразным кинетическим закономерностям подобных реакций (например, в ряде случаев может наблюдаться увеличение молярной концентрации образующегося продукта при неизменной — исходного субстрата). Во-вторых, реакционная способность-полимерного субстрата, как правило, убывает в ходе его ферментативной деградации. Иначе говоря, значения констант скоростей ферментативного превращения полимера прогрессивно уменьшаются по мере уменьшения степени полимеризации субстрата, что, в свою очередь, зачастую приводит к фактическому прекращению реакции при неполных степенях конверсии исходного полимера. [c.3]

    Ясно, что эти данные могут быть интерпретированы более простым образом, а именно что способ действия фосфорилазы (априорно принятый в цитируемой работе [16] как канонический для неупорядоченного действия фермента) несколько отличается от способа действия р-амилазы, что приводит к различному распределению продуктов деструкции полимерного субстрата по молекулярным массам (степени полимеризации). Как неоднократно указывалос . выше, это наиболее характерный признак действия деполимераз, и в рамках кинетики и субстратной специфичности действия ферментов он обусловлен различной зависимостью кинетических параметров ферментативной реакции от степени полимеризации (длины цепи) олигосахаридов. С точки зрения термодинамики действия деполимераз этот характерный признак объясняется различным числом сайтов в активном центре фермента, различным их сродством к мономерным остаткам субстрата и положением каталитического участка в активном центре. Как видно, и в этом случае введение гипотезы о множественной атаке было излишним и преждевременным, так как экспериментальные данные, полученные авторами работы [16], не были подвергнуты тщательному анализу. [c.91]

    Здесь, как правило, упускается из виду то фундаментальное положение для действия деполимераз, что состав продуктов действия ферментов на поли- или олигосахариды может сильно варьироваться (даже и без проскальзывания субстрата вдоль активного центра) и отражает в первую очередь значения кинетических параметров Кт, Ут или их отношение) действия фермента на индивидуальные олигосахариды (как исходные, так и образующиеся в процессе деструкции субстрата). Другая (также приемлемая, хотя и более формализованная) точка зрения базируется на том, что распределение продуктов реакции однозначно задается количеством сайтов в активном центре фермента, показателями их сродства к мономерным остаткам субстрата и положением каталитического участка, а также значениями гидролитического коэффициента при различной степени заполнения активного центра и различной степени полимеризации исходного субстрата. На наш взгляд, набор этих параметров обеспечивает столь гибкие возможности для объяснения практически любых распределений продуктов (промежуточных и конечных) в реакционной системе, что не нуждается в введении дополнительных концепций, к тому же с неясным физическим смыслом. [c.102]

    Термодиффузия. При изменении температуры газовой смеси и поддержании ее на достигнутом уровне происходит определенное расслаивание компонентов смеси. При этом молекулы более тяжелого газа диффундируют в направлении более низкой температуры до достижения равновесного состояния. Это явление называют термодиффузией. Оно было предсказано на основе положений кинетической теории газов. При одной и той же температуре молекулы обоих компонентов газовой смеси обладают одинаковой средней кинетической энергией [уравнение (7.1.13)], но различным количеством движения ти = ЗкТт, большим у тяжелых молекул. Поэтому более тяжелые молекулы дольше сохраняют направление и скорость движения, перемещаясь преимущественно в направлении снижения температуры, несмотря на постоянные упругие соударения молекул. Это связано с увеличением разности количеств движения молекул тяжелых и легких газов с ростом, температуры. Явление термодиффузии наблюдается и в жидкостях (эффект Людвига — Соре). Термодиффузия возникает и в случае изомерных соединений, на основании чего можно сделать вывод о зависимости ее не только от величины, но и от формы молекул. [c.334]

    Хорошо известным является то положение, что развитие науки происходит не путем монотонного наращивания запаса знаний, т. е. не кумулятивно, а посредством смены двух фаз, резко отличных друг от друга как по темпам, так и по способам генерирования новой научной информации. В соответствии с марксистской концепцией развити.ч науки эти фазы обычно называют революционной и эволюцио1шо11 илн интенсивной и экстенсивной. Если говорить конкретно только о химии, то одной из отличительных черт эволюционной фазы ее развития является решение различных тактических задач приемущественно экспериментального характера в рамках готовой гипотезы или теории, К тактическим задачам относятся, например, исследования кинетических параметров реакций, поиск оптимальных термодинамических условий осуществления процессов, органический синтез новых соединений в русле теории химического строения и т. д. [c.7]

    Мы уже говорили о кинетической инертности большинства соединений ПЭ. Это относится и к их комплексам. Именно кинетическая инертность позволяет закреплять лиганды в определенных и различных положениях координационной сферы ПЭ. Изображенные выше цис- и трансизомеры [Р1 СЦ(МНз)2] различаются тем, что в первом координата, соединяющая два одноименных лиганда, не проходит через центральный атом. Цис- и трансизомеры всегда имеют несколько (а иногда и силь ю) различающуюся растворимость в воде, кислотах, а также кинетическ[1е и термодинамические характеристики. [c.161]


Смотреть страницы где упоминается термин Различные кинетические положения: [c.286]    [c.39]    [c.399]    [c.260]    [c.163]    [c.50]    [c.28]    [c.174]    [c.328]    [c.200]    [c.146]    [c.9]    [c.127]    [c.310]    [c.310]    [c.272]    [c.321]    [c.27]   
Смотреть главы в:

Основы химии полимеров -> Различные кинетические положения




ПОИСК







© 2024 chem21.info Реклама на сайте