Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О первичных процессах фотосинтеза. Реакционные центры

    Заключение. В процессе фотосинтеза происходит превращение энергии света в биохимическую энергию. Первичное действие света состоит в том, что в фотохимических реакционных центрах электроны донора переносятся на акцептор в термодинамически невыгодном направлении. По крайней мере часть электронов возвращается по электрон-транспортной цепи к реакционным центрам. Благодаря особому расположению компонентов электрон-транспортной системы в мембране это сопровождается направленным переносом протонов и созданием протонного потенциала. Таким образом, аппарат фотосинтеза-это прежде всего протонный насос, приводимый в действие светом. Протонный потенциал обеспечивает возможность преобразования энергии путем фос- [c.392]


    Ключевыми стадиями первичных процессов фотосинтеза является эффективная миграция энергии в светособирающих комплексах, захват возбуждения фотоактивными пигментами реакционных центров, разделение зарядов и их первичная стабилизация в форме ион-радикалов. В [35] показано, что в число факторов, контролирующих эффективность начального разделения зарядов в структуре фотосинтетических реакционных центров, входят и циклические релаксационные процессы, включающие первичную поляризацию молекулярного окружения в макроструктуре ассоциатов донора и акцептора. Данные релаксационные процессы, индуцирующие определенную реорганизацию взаимодействующей среды, происходят уже в самой начальной стадии разделения зарядов, эффективно ускоряя скорость перестройки среды. [c.157]

    Фотореакции. Фотореакции относятся к первичным процессам любого фотосинтеза. Местом, где протекают эти фотохимические окислительно-восстановительные реакции, являются реакционные центры. Реакционный центр состоит из ряда компонентов, наиболее важные из которых первичный донор электронов (особый комплекс из хлорофилла и белка) и первичный акцептор электронов. Эти два компонента представляют собой окислительно-восстановительные системы. Система донора (Р/Р" ) обладает положительным, а система акцептора (Х/Х )-отрицательным потенциалом. Под воздействием энергии света происходит перенос одного электрона  [c.385]

    Полупроводниковый механизм рассматривает окислительно-восстановительные процессы в пигментных слоях хлорофилла с позиций электроники твердого тела [27]. Он предполагает миграцию зарядов по зоне проводимости или валентной зоне (в последней возникают светоиндуцированные вакансии) к центрам захвата — химическим акцепторам или донорам электронов. При экситонной миграции энергии в пигментной матрице нейтральный экситон может мигрировать к реакционному центру, где и происходит его диссоциация на два противоположно заряженных носителя. Разделение зарядов может иметь место не только в реакционном центре, но и на дефектах структуры пигментной матрицы [28]. В этом случае носители заряда раздельно мигрируют в матрице электронная вакансия (р) захватывается в активном центре, приводя к образованию катион-радикала хлорофилла (бактериохлорофилла), а электрон (е) — первичным акцептором, который может быть локализован вдали от активного центра. Центры захвата носителей заряда в пигментной матрице, обладающие низкой потенциальной энергией, разделены в пространстве в результате миграции зарядов по зоне проводимости или валентной зоне. В них инициируются первичные химические реакции фотосинтеза. [c.22]


    Фотохимические реакции фотосинтеза. Общие представления о фотосистемах. Фотохимический этап фотосинтеза включает в себя ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и транспорта электронов, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают реакционный центр, в котором протекают очень быстрые реакции первичного разделения зарядов комплекс компонентов, передающих электрон от реакционного центра (электрон-транспортная цепь) комплекс компонентов, осуществляющих работу по фотоокислению воды и восстановлению реакционного центра. [c.420]

    О ПЕРВИЧНЫХ ПРОЦЕССАХ ФОТОСИНТЕЗА. РЕАКЦИОННЫЕ ЦЕНТРЫ [c.21]

    Спиновая динамика в спин-коррелированных радикальных парах трансформирует начальную взаимную упорядоченность спинов и в результате создает такие формы поляризации (упорядоченности) электронных спинов, которые характерным образом проявляются в экспериментах по электронному парамагнитному резонансу. Проявление химической поляризации электронных спинов в спектрах ЭПР радикалов, вышедших из клетки в объем раствора, обсуждалось в предыдущей лекции. В этой лекции рассматривается форма спектра ЭПР спин-коррелированных РП. В настоящее время особенно много работ посвящено исследованию спиновой поляризации в спектрах ЭПР ион-радикальных (электрон-дырочных) пар, которые образуются в процессе разделения зарядов на первичных стадиях фотосинтеза. Поэтому в этой лекции ориентир взят на РП, образующиеся в реакционном центре (РЦ) фотосинтеза. Однако приведенные результаты могут быть применены и для интерпретации спектров ЭПР спин-коррелированных РП вообще. [c.106]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Кооперативный [26] механизм первичной ступени фотосинтеза включает взаимодействие в реакционном центре фотосинтезирующей системы двух электронно-возбужденных молекул хлорофилла — одной в синглетном, другой в триплетном возбужденных состояниях. Физический путь такой кооперации состоит в первичном индуктивно-резонансном синглет-триплетном переносе энергии от одной молекулы хлорофилла к другой, возбужденной предварительно в сравнительно долгоживущее триплетное состояние. Образовавшаяся дважды возбужденная молекула хлорофилла с запасом энергии 281—294 кДж и осуществляет первичный фотохимический процесс  [c.21]

    Первичная аминокислотная последовательность большинства структурных белков хорошо изучена. Для ряда белков реакционных центров определена и трехмерная пространственная структура. Однако структурно-функциональные соотношения в таких сложных системах не всегда очевидны. Именно поэтому направленная модификация структуры белка с параллельным контролем фотосинтетической активности является одним из наиболее мощных инструментов исследования механизмов процесса фотосинтеза. [c.336]

    Клевапик А. В. Исследование первичных процессов в реакционных центрах фотосинтеза Автореф. дис.... канд. физ.-мат. наук. М. МГУ, 1982,22 с. [c.289]

    Порфиркны принадлежат к числу наиболее стабильных и инертных органических молекул. Многие представители этой группы, являющиеся, как полагают, производными хлорофилла, были найдены в сырой нефти, угле, битуминозных породах и горючих сланцах. Эти последние представляют собой образования девонского и кембрийского периодов возраст их — около 400 млн. лет [62]. Стабильность порфиринов связывают с их вы-сококонденсированной циклической структурой, обусловливающей резонанс. Возможно, именно благодаря зтим особенностям молекула хлорофилла способна необычно долго сохранять энергию поглощенного светового кванта и полностью передавать ее соседней молекуле хлорофилла. Вследствие этого энергия отдельных квантов, поглощенных многими молекулами хлорофилла, может быть собрана в реакционном центре (см. гл. IX) и использована для фотосинтеза. Поскольку хлорофилл а ответствен за первичный процесс фотосинтеза (образование восстановительной силы), недостаточно, чтобы энергия передавалась от одной его молекулы к другой в молекулярной структуре хлорофилла а должен быть и какой-то центр, который реагирует химически. Считают, что он находится в кольце, состоящем из пяти атомов углерода (кольцо V на фиг. 5, Л). [c.20]


    Квантовый выход первичных процессов фотосинтеза достаточно высок. Поэтому указанное сокращение длительности и выхода флуоресценции пигментов в живых системах должно быть главным образом обусловлено не тепловыми потерями, а процессом фотохимической дезактивации синглетного возбуждения состояния S в реакционных центрах фотосинтеза. Независимо от механизма этого процесса РЦ следует рассматривать как естественные фотохимические тушители флуоресценции молекул пигментов светособирающей матрицы. Можно оценить эффективность этого тушения, считая, что в фотосинтетической мембране значения констант р, д, г (см. 1 гл. xxvn) сохраняются неизменными, а процесс тушения флуоресценции при захвате энергии реакционными центрами эквивалентен фотохимической дезактивации кф состояния S молекул антенны. Тогда, подставляя величины т. Б, xi, Bi в формулы (XXVn.l.l)-(XXVn.l.9), найдем, что эффективность использования возбуждения реакционными центрами составляет Ф 0,93 -j- 0,95 (Борисов А. Ю.). [c.296]

    Один из наиболее важных процессов миграции энергии осуществляется в фотосинтезе. Здесь происходит перенос энергии от фикоэритрина и фикоцианина на хлорофилл в направлении реакционного центра, где происходит первичный акт фотосинтеза (подробнее см. гл. XXVH). Электронная энергия может переноситься в биологических системах и в процессе транспорта электронов по общей схеме D- + A D +А-. [c.373]

    Разумеется, на пути к максимальной краткости нельзя обойтись без жертв, возможно не всегда оправданных. Некоторые аспекты проблемы хотелось бы видеть более полно и глубоко орвещенными. На наш взгляд, это в первую очередь касается первичных процессов фотосинтеза и в особенности вопроса о реакционных центрах фотосинтеза и механизме их действия. Фотосинтез как специфический фотоэнергетический процесс отличается от других биохимических темновых процессов прежде всего теми первоначальными звеньями, благодаря которым энергия кванта трансформируется в энергию химической связи. Это — поглощение квантов молекулами. пигмента, перенос энергии электронного возбуждения в фотосинтетической единице, разделение зарядов и первичная стабилизация энергии в реакционных центрах. Именно здесь, в этих звеньях, преодолеваются наибольшие и специфические для фотосинтеза трудности, связанные с необходимостью сопряжения столь различных процессов, как поглощение электромагнитного излучения и биохимические реакции. И современные исследования шаг за шагом вскрывают механизм этих процессов, показывая, каким образом природа преодолела эти трудности и, создав уникальную молекулярную организацию фотосинтетических единиц реакционных центров, обеспечила высокую скорость и эффективность запасания энергии света (увы, пока еще не достигнутые в искусственных фотохимических системах ). Неудивительно поэтому, что изучение первичных процессов и в особенности реакционных центров фотосинтеза — одно из наиболее быстро развивающихся направлений, успехи которого основаны на использовании самых современных физических методов исследования (в частности, сверхбыстрой (пикосекундной) лазерной спектроскопии) и па объединении идей целого ряда наук от молекулярной биологии до квантовой механики. Несомненно этим достижениям должно быть уделено большее внимание несмотря на те очевидные трудности, которые возникают при изложении физических аспектов фотосинтеза в кни- [c.6]

    НОЙ молекулы СО2 в процесс может вовлекаться до 2500 молекул хлорофилла. Исходя из этого расчета, была разработана концепция фотосинтетической единицы, в которой происходят первичные фотохимические реакции фотосинтеза в так называемом реакционном центре, причем каждый реакционный центр связан со сравнительно большим числом пигментных молекул, поглощающих фотон и передающих ему энергию. Любая фотосинтетическая электронтранспортная цепь включает фотоси- [c.334]

    Под влиянием фундаментальных работ Теренина, Краспов-ского было показано, что первичный процесс трансформации энергии света при фотосинтезе не специфичен только для хлорофилла, он свойствен многим красителям и заключается в фотоокислении немногих молекул хлорофилла, которые находятся в реакционном центре. Предложено несколько механизмов первичного фотопроцесса [c.21]


Смотреть страницы где упоминается термин О первичных процессах фотосинтеза. Реакционные центры: [c.303]    [c.45]    [c.361]    [c.308]    [c.284]    [c.239]    [c.337]   
Смотреть главы в:

Фотохимические процессы в слоях -> О первичных процессах фотосинтеза. Реакционные центры




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте