Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовые турбины

    В камерах сгорания реактивных двигателей коррозия стенок камеры сгорания, сопла и деталей газовой турбины вызывается как сернистыми соединениями, так и некоторыми металлами, содержащимися в топливе в виде золы. [c.57]

    Основным компонентом, входящим в состав жаростойких сплавов и сталей, из которых изготавливаются камера сгорания, газовая турбина и реактивное сопло, является никель. При сгорании всех сернистых соединений топлива образуется сернистый газ. В условиях температур выше 1000° С может образоваться сернистый никель, ЧТО приводит к образованию эвтектики никель—сернистый никель. Так как температура плавления этой эвтектики равна приблизительно 650° С, она выгорает и вызывает разрушение деталей. [c.57]


    Двигатели сверхзвуковых пассажирских самолетов будут подобны современным газовым турбинам, но с более высокими значениями нагрузки на подшипники и зубчатые передачи, с более высокими температурами газовых и воздушных потоков. Значительно увеличится количество тепла, выделяющегося в результате трения. Масла в двигателе будут подвергаться воздействию более высоких температур и контактных напряжений. [c.176]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]

    Для гидротурбин ТГС-30 Для судовых газовых турбин Компрессорные [c.152]

    Автомобильные бензины Дистиллятные топлива для судовых газотурбинных и котельных установок Остаточные топлива для судовых котельных установок и газовых турбин Масла для авиационных ГТД и редукторов вертолетов [c.17]

    Рабочий процесс в ГТД. Как и в поршневом двигателе, в ГТД для повышения эффективности рабочего процесса воздух или топливо-воздушную смесь до начала горения необходимо подвергать сжатию. Однако если в поршневом двигателе в силу периодичности рабочего процесса все циклы образования рабочего тела, в том числе и сжатие, протекают в цилиндре, то в ГТД это оказывается неприемлемым. Поэтому ГТД кроме газовой турбины имеет компрессор, который давление забираемого из атмосферы воздуха повышает в 5, 10, 20 и более раз, и камеру сгорания, где воздух, поступающий от компрессора, нагревается за счет сгорания топлива. [c.160]

    В условиях хранения и эксплуатации техники на металлических поверхностях при конденсации воды в застойных зонах, донных участках и других низких местах, имеющихся в агрегатах для хранения, транспортирования и перекачки нефтепродуктов, в масляных и топливных системах двигателей, в проточных системах газовых турбин электролиты (водные растворы продуктов окисления нефтепродуктов) собираются в значительном объеме. На боковых поверхностях различных агрегатов и изделий образуются пленки электролитов. В этих условиях поверхность металла, находящаяся под пленкой электролита, будет функционировать в качестве эффективного катода и способствовать быстрому разрушению металла на анодных участках (в объеме электролита). Дифференциация на значительные катодные и небольшие анодные зоны будет происходить в ре- [c.286]


    Истечение газов и паров — широко распространенный процесс в технике. В частности, истечение является основным процессом в паровых и газовых турбинах и в реактивных двигателях. [c.35]

    Регулирование изменением числа оборотов осуществляется просто лишь в тех случаях, когда двигатель компрессора допускает это изменение без значительного снижения коэффициента полезного действия. К таким двигателям относятся паровые и газовые турбины. [c.61]

    Паровые и газовые турбины [c.83]

    Поршневые дожимающие газоперекачивающие компрессоры применяют главным образом на магистральных газопроводах. Приводом этих компрессоров служит поршневой газовый двигатель, более экономичный, чем газовая турбина. Выпускают газоперекачивающие компрессоры горизонтальные, оппозитные и П-образные. [c.240]

    Маслоснабжение компрессорных машин с приводом от паровых или газовых турбин производится насосом, расположенным на турбине, В компрессорных машинах с приводом от электродвигателя масляные системы состоят из масляного бака с фильтром, главного, пускового и резервного маслонасосов, маслоохладителей, редукционных и предохранительных клапанов и трубопроводов. В отдельных случаях у компрессорных агрегатов бывает только два маслонасоса — главный и резервный, он же и пусковой. [c.270]

    Для привода центробежных компрессорных машин часто применяют газотурбинные двигатели. Это особенно удобно, когда установка предназначена для нагнетания природного газа, который используется в качестве дешевого топлива для газовой турбины. В этих случаях в состав установки помимо машин, предназначенных непосредственно для нагнетания газа, входят также центробежные машины, обслуживающие газовую турбину и электрогенераторы, используемые для получения электроэнергии. Такие агрегаты называются газотурбинными установками. [c.292]

    Так, газотурбинная установка ГТ-700-4, предназначенная для нагнетания природного газа, состоит из газовой турбины, осевого компрессора, нагнетателя, редуктора с турбодетандером, генератора и камеры сгорания. Очищенный от механических примесей воздух поступает в осевой компрессор, где сжимается до 5 ат и направляется в регенератор для подогрева отходящими газами турбины до более высокой температуры. В камере сгорания происходит сгорание топлива в потоке горячего сжатого воздуха. Продукты сгорания с температурой 700° С поступают в двухступенчатую активно-реактивную турбину, где расширяются, совершая работы, затем проходят регенератор и далее выбрасываются в атмосферу. Турбина через редуктор приводит во вращение вал нагнетателя, сжимающего природный газ. [c.292]

    В производстве слабой азотной кислоты под абсолютным давлением 7,3 ат применяют газотурбинный агрегат ГТТ-3, состоящий из осевого компрессора, дожимающего нагнетателя, газовой турбины и генератора переменного тока. Осевой компрессор типа ГТ-600-1,5 сжимает воздух до 3,53 ат. Далее воздух поступает в дожимающий нагнетатель типа 360-21-4, где сжимается до 7,3 ат и направляется в установку производства слабой азотной кислоты. Номинальная производительность компрессора 1000 м мин. Агрегат приводится в работу с помощью газовой турбины мощностью 7250 кВт, работающей на природном газе. [c.292]

    Если привод компрессора осуществляется от синхронного электродвигателя и газовой турбины, для пуска готовят их одновременно. Прогревают паром или газом подводящие трубопроводы и турбину. [c.301]

    В процессах, протекающих, например, в газовых турбинах, когда горение продолжается и при прохождении газа через машину, необходимо учитывать работу на валу и работу против сил трения, а также другие виды механической энергии . В большинстве промышленных процессов эти эффекты отсутствуют, так что ДЯ=(7 (для непрерывных процессов) и Е=д (для периодических процессов). [c.90]

    ТОПЛИВА ДЛЯ ГАЗОВЫХ ТУРБИН И РЕАКТИВНЫХ ДВИГАТЕЛЕЙ [c.446]

    В первоначальном периоде создания дизельных и реактивных двигателей и газовых турбин одно из основных положений состояло в том, что в качестве топлива в них можно использовать чуть ли не любую горючую жидкость. Впрочем, применение порошкообразного угля практически невозможно, а сама идея использования любого вида жидкого топлива осуществлена лишь частично, и то только в больших, тихоходных, обычно стационарных установках. Для нормальной же эксплуатации небольших, высокоскоростных дизельных двигателей требуется сугубо специальный вид топлива, как, впрочем, и для работающих па жидком топливе газовых турбин и для реактивных двигателей. [c.446]

    Углерод, образующийся в камере сгорания газовой турбины, бывает двух форм аморфный (мягкий и пушистый) и графитоподобный (твердый и кристаллический) [372, 381], последняя форма причиняет особенно много неприятностей. [c.448]

    Основным компонентом является соль, но часто содержатся и соединения никеля и ванадия, особенно в нефтях асфальтового типа. При высоких температурах окиси этих металлов могут вызвать коррозию при соприкосновении с лопастями газовых турбин, огнеупорами в топках, трубами в современных котлах высокого давления. [c.478]


    В турбореактивных газотурбинных двигателях (ТРД) масло используют для смазки и охлаждения крупногабаритных высокоскоростных подшипников качения турбокомпрессорного агрегата (газовой турбины, компрессора), шестерен коробки привода агрегатов и других узлов трения, а также как гидравлическую жидкость в различных системах регулирования и автоматики. В турбовинтовых газотурбинных двигателях (ТВД) масло служит также для смазки и охлаждения тяжелонагруженного силового редуктора, в связи с чем возникают некоторые дополнительные требования к качеству масла для ТВД. [c.60]

    Расход влажного воздуха 0 через газовую турбину [c.247]

    Недавно в США введена в эксплуатацию в г. Пампа (штат Тексас) новая установка для окисления газообразных парафинов [14]. На ней окисляют воз-духом бутан, полученный из природного газа газовых скважин в Хуготоне, под давлением, которое, как предполагают, выше, чем на установке в г. Бишопе. По-видимому, одновременно применяют также катализатор, что позволяет снизить температуру процесса. Основным продуктом является уксусная кислота, но, смотря по желанию, можно также получать пропионовую и масляную кислоты с несколько большими выходами. Разделение и очистка продуктов реакции происходят, как описано выше. Остающийся после масляной абсорбции азот подают в газовые турбины, где он, теряя давление, отдает при этом энергию. Поразительно то, что на новой установке формальдегид не получается [15]. [c.438]

    Жаропрочные и жаростойкие бориды d-элемевтов (Сг, Zr, Ti, Nb, Та) и их сплавы применяются для изготовления деталей реактивных двигателей, лопаток газовых турбин и пр. Некоторые бориды используются как катализаторы, в качестве материалов для катодов электронных приборов и т, д. [c.437]

    С соответствующими металлами кобальт, родий и иридий образуют твердые растворы и интерметаллические соединения, что определяет физико-химические и механические свойства их сплавов. Особо широко используются кобальтовые сплавы. Многие из них жаропрочны и жаростойки. Например, сплав виталлиум (65% Со, i8% Сг, 3% Ni и 4% Мо), применяемый для изготовления деталей реактивных двигателей и газовых турбин, сохраняет высокую проч-I ость и практически не подвергается газовой коррозии вплоть до 800—900°С. Имеются также кислотоупорные сплавы, не уступающие платине. Кобальтовые сплавы типа алнико (например, 50% Fe, 24% Со, 14% Ni, 9% А п 3% Си) применяются для изготовления постоянных магнитов. Для изготовления режущего инструмента важное значение имеют так называемые сверхтвердые сплавы, представляющие собой сцементированные кобальтом карбиды вольфрама (сплавы ВК) и титана (сплавы ТК). Большое значение имеет кобальт как легирующая добавка к сталям. [c.596]

    Вторая группа ДВС подразделяется на а) реактивные двигатели (ракетные и воздушно-реактивные) и б) газовые турбины (тратгспортные и стационарные). [c.100]

    Поскольку при сгорании топлива в камере развивается высокая температура (1500—1800 °С), а материалы камеры, лопаток газовой турбины и реактивного сопла не выдерживают столь высоких температур, горячие газы разбавляют вторичным воздухом непосредственно после зоны горения топлива. При смешении газового потока с вторич — ным воздухом температура смеси снижается до 850 — 900 °С. В зоне горения топлива необходимо создавать условия для обеспечения стабильности процесса горения без срывов пламени. Скорость распространения фроггта г[ламени составляет около 40 м/с. Для снижения скорости газо воздушного потока до величин менее скорости распространения фронта пламени в камерах сгорания устанавливают различ — ные завихрители, стабилизаторы, обтекатели, экраны и т.д. Эти устройства, кроме того, повышают турбулентность движения горючей смеси и тем самым ув 1личивают скорость ее сгорания. [c.102]

    Та-22 20- 23 90 - 15 186 Паровые и газовые турбины, турбокомпр ч соры, редукторы и т.д. [c.137]

    При расчете термогазодинамических процессов и обработке результатов исследований центробежных и осевых компрессоров, паровых и газовых турбин обычно определяют параметры газа в характерных сечениях (при входе и выходе) эле.ментов проточной части. Действительный характер процесса в этих элементах остается, как правило, неизвестным. Специальные исследования для установления действительного характера процесса в каждом из элементов сопряжены со значительными техническими трудностями и не во всех случаях могут осуществляться с достаточной точностью. Это относится, в первую очередь, к рабочим колесам, в которых измерения необходимо проводить в относительном движении, а результаты передавать на измерительные приборы с помощью сложной системы передатчиков. При поэлементном анализе ступени компрессора в этом нет особой необходимости, так как проще заменить действительный процесс некоторым условным, используемым для всех элементов как при обработке результатов исследований, так и при расчетах. Вносимая при этом погрешность незначительна и компенсируется при едином методическом подходе к расчету и эксперименту. [c.54]

    Шведский инженер Лаваль впервые предложил сопло, в котором суживающаяся часть дополняется расширяющимся конусом с углом 10—12°. Это сопло получило название сопла Лаваля. В сул<и-вающейся части сопла Лаваля пар или газ расширяется от начального давления до критического, причем в минимальном сечении устанавливается критическая скорость. В расширяющейся части сопла обеспечивается дальнейшее плавное расширение пара или газа до давления окружающей среды без отрыва потока от стопок сопла и образования вихрен. При этом пар или газ вытекает из сопла Лаваля со сверхзвуковой скоростью. Эти сопла широко применяют в паровых и газовых турбинах и реактивнбй техники. [c.36]

    До недавнего времени область применения центробежных компрессорных машин (ЦКМ) ограничивалась конечным давлением сжимаемого газа. Машины применялись главным образом для средних давлений — 8—10 ат, максимум до 30 ат прн большой производительности. В связи с созданием турбокомпрессоров высокого давления область применения ЦКМ расширяется. ЦКМ постепенно заменяют поршневые машины во многих производствах химической и нефтехимической промышленности, где их используют для сжатия воздуха, кислорода, азота, водорода и других газов. Турбомашины находят широкое применение также в металлургической, горной, холодильной и металлообрабатывающей промышленности. В ряде химических и нефтехимических производств используют нагнетатели и турбокомпрессоры с газовой турбиной (турбоде- [c.262]

    Осевые компрессоры являются быстроходными машинами большой производительности. Они более компактны п имеют больший к. п. д., чем турбокомпрессоры. В промышленности применяют осевые турбомаип1ны производительностью от 3000 до 30 000 м /ч, со степенью сжатия 3—6, числом колес 10—20 и числом оборотов до 12 000 в минуту. Осевые компрессоры широко используют в соединении с газовой турбиной в системе реактивных двигателей самолетов, в силовых электроустановках, доменном производстве, химической, нефтеперерабатывающей и нефтехимической промышленности. [c.290]


Библиография для Газовые турбины: [c.308]    [c.210]   
Смотреть страницы где упоминается термин Газовые турбины: [c.55]    [c.84]    [c.102]    [c.102]    [c.118]    [c.126]    [c.66]    [c.70]    [c.286]    [c.301]    [c.241]    [c.248]   
Смотреть главы в:

Турбокомпрессоры -> Газовые турбины

Осевые и центробежные компрессоры -> Газовые турбины




ПОИСК





Смотрите так же термины и статьи:

Газовая турбина



© 2025 chem21.info Реклама на сайте