Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные понятия о методе молекулярных орбиталей

    На современном уровне рассмотрены основные понятия и законы химии строение вещества, химическая связь (метод молекулярных орбиталей, метод валентных связей, зонная теория кристаллов), важнейшие положения химической термодинамики и химической кинетики, методы исследования структуры веществ. [c.2]


    Химическая связь, как показали в свое время на примере молекулы водорода Гейтлер и Лондон, образуется за счет увеличения (но сравнению с невзаимодействующими атомами водорода, находянщмися на том же расстоянии, что и в молекуле) электронной плотности между атомами. Это увеличение в расчетах по методу МО учитывается с помощью так называемых интегралов перекрывания. Электроны в основном состоянии молекулы занимают орбитали с наи-низшей энергией. На каждой орбитали может находиться по два электрона с нротивополоншыми спинами. Здесь к этой общеизвестной школьной модели добавляется одна тонкость. Вследствие электростатического взаимодействия электроны отталкиваются, в результате чего даже два электрона, находящиеся на одной и той же молекулярной орбитали, имеют тенденцию двигаться по возможности на большем удалении друг от друга. Решение уравнения Шредингера для атома водорода облегчается тем, что единственный электрон 1 этого атома обладает сферической симметрией. В атоме гелия атомная орбиталь вследствие взаимного отталкивания двух электронов 1 уже не обладает сферической симметрией, и с этим связаны трудности в расчетах распределения электронной плотности в атоме гелия. Энергия корреляции движения электронов может достигать примерно 20% общей электронной энергии молекулы и в расчетах учитывается с помощью интегралов электрошого отталкивания . Кроме того, в молекуле существует еще конфигурационное взаимодействие — взаимодействие между самими молекулярными орбиталями. Волновая функция, учитывающая конфигурационное взаимодействие, аналогична по своей записи уравнению для волновой функции, приведенному в 1 этой главы, однако вместо <рг волновых функций атомных орбиталей в ее выражение входят Ф, — волновые функции атомных или молекулярных конфигураций . Под конфигурацией понимается способ распределения электронов по атомным (в атоме) или молекулярным орбиталям (в молекуле). Поясним это понятие на простом примере атома лития, имеющего 1 и электрона. В зависимости от того, находится ли атом в основном или в возбужденном состоянии, электроны по-разному располагаются на двух орбиталях 1 22х и 1 2 2. Таким образом, полная волновая функция, учитывающая конфигурационное взаимодействие, для атома лития будет иметь вид [c.91]

    Метод молекулярных орбиталей в описании химической связи. Основные понятия. Перспективы метода [c.60]

    ОСНОВНЫЕ ПОНЯТИЯ О МЕТОДЕ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ [c.84]


    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Классификация молекулярных орбиталей. Итак, мы познакомились на примере простейших молекул с основными понятиями метода МО, видом и некоторыми свойствами молекулярных орбиталей. Однако в молекулах бывают МО различного вида. Чтобы ориентироваться в свойствах молекулярных орбиталей, а значит и свойствах образуемых ими связей, МО классифицируют. [c.110]

    В отличие от метода молекулярных орбиталей основная идея метода валентных связей состоит в предположении, что атомные орбитали в молекуле в известной мере сохраняют свою индивидуальность. Волновая функхщя многоэлектронной молекулы строится путем спарнаания орбиталей отдельных атомов, а понятие молекулярная орбиталь в теории валентных связей просто не нужно. [c.66]

    При использовании метода молекулярных орбиталей (МО) предполагается, что данный электрон движется по орбитали, охватывающей всю молекулу, т. е. в поле нескольких ядер. Чтобы найти вид МО, путем перекрывания атомных орбиталей строят сначала пустые молекулярные орбитали, а затем распределяют по ним электроны. Так же как для атома, применяют понятие плотности зарядового облака, которая равна квадрату волновой функции ф 2, соответствующей данной МО. Наглядное представление МО можно получить изображением ф (или граничной поверхности ф ),, заключающей в своих пределах основную часть зарядового облака (примерно 90—95%). Точно определить состояние электрона в по ле нескольких ядер нельзя. Одним из наиболее распространенных упрощений является линейная комбинация атомных орбиталей (ЛКАО). Принимают, что полная волновая функция ф молекулы есть суммарный результат вкладов от атомных орбиталей фд н фв [c.72]

    Теория групп является разделом математики, который применяется к некоторым задачам, удовлетворяющим определенным требованиям. Есть много проблем, представляющих интерес для химика, к которым можно подойти с помощью этого метода. Сюда относятся описание молекулярных колебаний, классификация молекулярных электронных орбиталей, вывод правил отбора для переходов в инфракрасных спектрах и спектрах комбинационного рассеяния и электронных переходов, составление гибридных и молекулярных орбиталей, вывод расщеплений в кристаллическом поле и многочисленные другие применения. Мы изложим здесь вкратце основные понятия, необходимые для правильного использования таблиц характеров в спектроскопии. Более подробное изложение можно найти в книгах Коттона [2], Джаффе и Орчина [3]. [c.128]

    Основные понятия. Согласно методу МО электроны в молекулах распределены по молекулярным орбиталям, которые подобно атомным орбиталям (АО) характеризуются определенной энергией (энергетическим уровнем) и формой. В отличие от АО молекулярные орбитали охватывают не один атом, а всю молекулу, т.е. являются двух- или многоцентровыми. Если в методе ВС атомы молекул сохраняют определенную индивидуальность, то в методе МО молекула рассматривается как единая система. [c.57]

    Обрисовать будущее метода МО не трудно. Несомненно, что в системе основных понятий теоретической химии он сохранит принадлежащее ему сейчас место. Споры о том, какой из методов — валентной связи или молекулярных орбиталей — лучше, отошли в прошлое. Понятия о локализованных, нелокализованных, ортогональных, неортогональных и т. п. орбиталях превратились в химические термины. Убеждение в жизненности понятия молекулярной орбитали основано на том, что модель независимых частиц (одночастичное приближение) лежит в основе естественного и эффективного подхода к объяснению явлений природы. При этом, конечно, для количественного понимания химических явлений необходимо учитывать корреляции между парами электронов. Таким образом, всегда существует важная задача правильного выбора независимых частиц и создания подходящего языка для описания взаимодействий между ними. [c.438]

    К сожалению, вышеупомянутая монография Вудварда и Гоффмана довольно сложна для восприятия. Основная причина этого в том, что авторы предполагают достаточное представление читателя о методе молекулярных орбиталей и с теорией химической связи, что весьма часто не соответствует действительности. Как правило, большинство химиков-ор-гаников у нас в стране в своей повседневной работе мало пользуются основными понятиями метода молекулярных орбиталей, и именно поэтому ряд исходных положений принципа кажутся им вовсе не такими очевид- [c.590]


    В начале развития квантовой механики компьютеры были недоступны, но основные уравнения, связывающие гамильтонианы и волновые функции, уже были поняты. Было также ясно, что если описывающий молекулу водорода гамильтониан легко написать, то вычислить волновую функцию не так просто. Некоторые исследователи надеялись, что прогресс в компьютерной технике устранит эти затруднения. Другие разыграли иную карту и начали разрабатывать приближенные методы расчета, начиная с метода молекулярных орбиталей Хюккеля (МОХ) через полуэмпири-ческие к более и более сложным методам. Интересно отметить, что в этой истории исследователь, достигший наибольшего успеха, был не тот, кто использовал наибольшее количество машинного времени... В результате при решении некоторых проблем вполне правдоподобные заключения делаются с помощью метода МОХ, для других проблем приходится использовать более сложные расчеты. Читатель поймет, что программа SOS, приспособленная для работы на микрокомпьютере [174], сравнима с методом МОХ. Следует помнить, что программа LHASA, занимающая по своим требованиям к компьютеру промежуточное положение, реализована на компьютере VAX-11/750, цена которого около 95 ООО долларов, в то время как программа SOS работает на Apple II, стоившем примерно в 90 раз меньше. В защиту полу-эмпирических расчетов сошлемся также на мнение Дьюара [346], что метод MNDO дает результаты, за немногими исключениями сравнимые с результатами, полученными наиболее сложными из известных методов, требующих по крайней мере в 1000 раз больше машинного времени. [c.76]

    Мощный стимул для развития теории химических реакций дала квантовая механика. В конце 50-х — начале 60-х годов в органическую химию благодаря прежде всего работам Г. Лонге-Хиггин-са и М. Дьюара начали широко внедряться основные идеи теории возмущений, что открыло возможность перехода от рассмотрения изолированных молекул к рассмотрению взаимодействующих молекул. Остающиеся белые пятна, связанные с переходным состоянием и нестабильными интермедиатами, для простых молекул были заполнены корреляционными диаграммами Уолша, а также вытекающими из этих диаграмм корреляционными правилами. Основным аппаратом теории возмущений и основой для построения корреляционных диаграмм стал метод молекулярных орбиталей, допускающий наглядную интерпретацию тех понятий, которыми этот метод оперирует. [c.6]

    Возможно, наиболее важным понятием, связанным с координационными соединениями и контролирующим их, является льюисовская кислотность иона металла. Это понятие будет расомотре-но в гл. 2, а здесь достаточно сказать, что комплексы непереходных металлов (Ма+, К+, Са +, Мд +, Ва +, А1 +) удерживаются вместе с электростатическими силами и их стереохимия определяется почти исключительно размером лиганда и зарядом на ионе металла. Устойчивости комплексных ионов изменяются параллельно с основностью протонов лигандов, и эффективная роль иона металла подобна таковой протона. Стереохимия комплексов переходных металлов более сложна, и в настоящее время не существует удовлетворительной эмпирической или теоретической модели для детального описания всех аспектов их структуры или даже стереохимии. Для многих из этих металлов ионная модель усложняется тем, что их электронные облака не имеют сферической формы (эффекты кристаллического поля), а также, что подразумевается в их названии, очень значительным отступлением от ионного характера, связанным с переходом от ионной к ковалентной связи. Для таких комплексов важна как нейтрализация зарядов, так и кислотность по Льюису, и для описания химической связи в этих комплексах были развиты теория поля лигандов и метод молекулярных орбиталей [2, 5]. [c.19]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Долгое время П. м. были, основными методами квантовохим. вычислений. С развитием вычислит, техники их постепенно вытесняют более фундаментальные неэмпирине-ские методы расчета. Однако для исследования сложных многоэлектронных молекул значение П. м. пока сохраняется. М. В. Базилевский. ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, вариант молекулярных орбиталей метода, используемый для расчета энергии и электронной структуры высокосимметричных молекул, прежде всего комплексов переходных металлов. Основана на понятиях орбиталей и теоретико-групповом подходе, при к-ром, напр., сначала из nd-, (п -Ь l)s- и (м + 1)р-орбиталей центр, атома и отдельно из а- и я-орбиталей лигандов строят орбитали симметрии комплекса. С помсщью найденных т, о. орбиталей одного и того же типа симметрии определяют мол. орбитали (МО) как линейные комбинации орбиталей симметрий и соответствующие им орбитальные энергии. В Качеств, вариантах П. л. т. расположение уровней орбитальных энергий определяется с учетом того, сильно или слабо перекрываются орбитали центр, атома и орбитали лигандов, а также с учетом характера перекрывания (связывающего или антисвязывающего). Прн модельных количеств, расчетах получают схему расположения по энергии МО разл. типов симметрии, а также устанавливают тенденции в изменении этой схемы при вариации поля лигандов, изменении числа -электронов у центр, атома, учете я-электронов лигандов и г. п. [c.473]


Смотреть страницы где упоминается термин Основные понятия о методе молекулярных орбиталей: [c.6]    [c.97]    [c.6]    [c.6]    [c.473]    [c.91]   
Смотреть главы в:

Неорганическая химия -> Основные понятия о методе молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Метод молекулярных орбиталеи

Метод молекулярных орбиталей ММО

Метод молекулярных орбиталей в описании химической связи. Основные понятия. Перспективы метода

Молекулярная метод Метод молекулярных

Молекулярные орбитали орбитали

Орбитали метод

Орбиталь молекулярная

Понятие о методе молекулярных орбиталей



© 2025 chem21.info Реклама на сайте