Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неспаренный электрон молекулярная орбиталь

    Как и в молекуле В2, в молекуле О2 два электрона с параллельными спинами занимают по одному две орбитали с одинаковой энергией и Лу. Таким образом, метод молекулярных орбиталей, естественно объясняет наличие в молекуле О2 двух неспаренных электронов, которые и обусловливают магнитные свойства кислорода. Избыток связывающих электронов в молекуле О2 равен четырем. [c.106]


    Решение. У каждого атома В атомные орбитали Ь, 2р . Магнитные свойства молекулы В указывают на то, что у молекулы есть неспаренные электроны. Заполнение молекулярных орбиталей электронами подчиняется правилу Хунда. Тогда электронную конфигурацию молекулы В2 можно записать так  [c.14]

    Теория молекулярных орбиталей позволяет объяснить парамагнитные свойства молекулы О2, обнаруживая наличие в ней двух неспаренных электронов, тогда как теория Льюиса не в состоянии сделать этого. В льюисовой структуре О 2 нет неспаренных электронов [c.529]

    Символ К К означает наличие четырех электронов на внутренних оболочках с п = 1, которые не оказывают влияния на химическую связь. Согласно экспериментальным данным, длина связи в В2 равна 1,59 А, т.е. меньще, чем в молекуле 2 (2,67 А). Энергия связи соответственно больше 274 кДж моль по сравнению с 110 кДж моль Оба эффекта обусловлены большим положительным зарядом ядра бора, который обусловливает более прочное взаимодействие с электронами. Веским аргументом в пользу теории молекулярных орбиталей явилось экспериментальное обнаружение (путем магнитных измерений) в молекуле В2 двух неспаренных электронов. Оно служит прямым подтверждением именно той последовательности орбитальных энергетических уровней и к , которая указана на рис. 12-8 если бы последовательность этих орбитальных уровней была обратной, оба электрона должны были располагаться со спаренными спинами на орбитали а , и в молекуле не было бы неспаренных спинов. (Исторически дело обстояло так неспаренные электроны в В2 не были предсказаны заранее экспериментальное обнаружение неспаренных электронов в В2 заставило пересмотреть прежние взгляды на последовательность орбитальных энергий в двухатомных молекулах и придать ей вид, иллюстрируемый рис. 12-8.) [c.526]

    Оправдать такие льюисовы структуры О2 может только предположение об их резонансе, т.е. представление об истинной электронной структуре О 2 как о резонансном гибриде двух указанных выше структур с неспаренными электронами. Но такой подход представляется искусственным. Проще вместо льюисовых структур судить об электронном строении двухатомных молекул, пользуясь представлениями о молекулярных орбиталях. [c.529]

    Опишите электронное строение молекулярного иона О , пользуясь представлениями теории молекулярных орбиталей. Каков порядок связи в этой молекулярной частице и сколько в ней неспаренных электронов  [c.530]

    Нейтральная двухатомная молекула ОН наблюдается в космическом пространстве. Опишите ее электронное строение в рамках теории молекулярных орбиталей, принимая во внимание только 2р-орбитали кислорода и Ь-орбиталь водорода. На молекулярной орбитали какого типа находится неспаренный электрон в молекуле ОН Распределена ли эта орбиталь по атомам кислорода и водорода или же она локализована только на одном из этих атомов Если локализована, то на каком атоме  [c.548]


    Согласно закону Стокса, длина волны флуоресценции всегда больше длины волны возбуждающего света. Однако имеются примеры антистоксовой флуоресценции, когда длина волны флуоресценции меньше длины волны возбуждающего света. Возбуждение молекулы соответствует переходу электрона с основного уровня на возбужденный. Поскольку молекулярные орбитали молекул с четным числом электронов заполнены парами электронов, имеющими противоположно направленные спины, то при переходе электрона на верхнюю орбиталь его спин может оказаться ориентированным или в том же, или в противоположном направлении, что и у оставшегося на нижней орбитали электрона. Если ориентация спина сохранится, то возбужденное состояние будет иметь тот же результирующий спиновый момент, что и основное состояние. При этом мультиплетность сохраняется. Мультиплетность состояния равна п+, где п — число неспаренных электронов. Если же ориентация спина изменится на противоположную, то изменится и мультиплетность. Мультиплетность основного состояния большинства молекул с четным числом электронов равна 1, т. е. это синглетные состояния. При сохранении мультиплетности возбужденное состояние тоже будет -синглетным. Если же возбуждаемый электрон меняет направление спина, то возбужденное состояние будет три-плетным. Таким образом, одному основному состоянию соответствует набор разных возбужденных состояний — синглетных и триплетных (рис. 28). [c.53]

    Что означает подобный резонанс с точки зрения теории молекулярных орбиталей Считается, что в каждой из участвующих структур I и II неспаренный электрон занимает / -орбиталь тригонально связанного углерода. Перекрывание этой р-орбитали с л -облаком двойной связи приводит к делокализации свободного электрона и стабилизации радикала. [c.377]

    В молекуле N0 имеется нечетное число (И) электронов. Следовательно, по крайней мере один из них должен оставаться неспаренным. Диаграмма молекулярных орбиталей показывает, что в молекуле N0 не спарен всего один электрон. Установлено, что это согласуется с экспериментальными данными. В молеку ле N0 связывающих электронов только на 5 больше, чем разрыхляющих, и это объясняет, почему связь в N0 слабее, имеет большую длину и меньшую частоту колебаний, чем в СО. То, что [c.511]

    Вероятность одновременного нахождения неспаренных электронов двух орбиталей в одной и той же точке пространства равна нулю, но она имеет вполне определенное значение для спаренных между собой электронов двух орбиталей. Электроны в триплетном состоянии стремятся быть друг от друга на большем расстоянии, чем электроны в синглетном состоянии. Следовательно, электронное отталкивание в триплетном состоянии меньше. Триплетные состояния можно описывать как бирадикальные состояния, однако это понятие недостаточно наглядно и не имеет общего характера. Пространственное распределение электронов в возбужденном синглетном состоянии может быть таким, что молекулу в этом состоянии также можно рассматривать как бирадикал. С другой стороны, можно представить себе триплетные состояния, которые по своей природе вовсе не являются бирадикалами, например триплетные состояния длинных сопряженных систем, в которых возбужденный электрон размазан по всей молекулярной систе.ме. Триплетные состояния антрацена и ацетона можно изобразить так  [c.104]

    О появятся две электронные пары и неспаренных электронов в молекуле О2 не будет. Однако исследование магнитных свойств кислорода свидетельствует о том, что в молекуле О2 имеются два неспаренных электрона. Ряд исследователей предприняли попытки усовершенствовать метод валентных связей и сделать его пригодным для истолкования этих ф актов. Однако более плодотворным оказался другой подход к объяснению и расчету ковалентной связи, получивший название метода молекулярных орбиталей (сокращенное обозначение метод МО). Значительный вклад в его [c.99]

    По сравнению с диамагнитными соединениями парамагнитные соединения характеризуются более сложными спектрами УФС и РФС. Молекула кислорода имеет два неспаренных я -электрона. Спектр УФС кислорода приведен на рис. 16.11. Фотоионизация электрона с частично заполненной разрыхляющей молекулярной Лд(2р)-орбитали характеризуется первым пиком в спектре УФС, реализуется только одно ионное состояние. В то же время фотоионизация электрона с одной из других заполненных молекулярных орбиталей приводит в каждом случае к двум электронным состояниям иона О2. Таким образом, если электрон удаляется с заполненной связывающей я -орбитали, то на ней остается неспаренный электрон, спин которого может быть параллелен или антипараллелен спинам двух неспаренных электронов, находящихся на разрыхляющей я -орбитали. Если спин оставшегося электрона параллелен спинам электронов на л -орбитали, то мы будем иметь три неспаренных электрона, полный спин 5 = 3/2 и электронное состояние лля молекулы О . При другом направлении спина электронным состоянием молекулы 02 будет П . Состояния П и П молекулы О2 имеют различные энергии, и, таким образом, ионизационный пик я -орбитали расщепляется. В табл. 16.4 приведены наблюдаемые характеристики молекулы О2, полученные из спектров УФС и РФС. [c.343]


    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    На молекулярной орбитали какого типа находится неспаренный электрон в ионе НР Локализована ли эта орбиталь на атоме Р либо Н Какова молекулярно-орбитальная электронная конфигурация иона НР Чему равен порядок связи в ионе НР В ионе НР Где больше энергия связи, в НГ или НГ Является ли парамагнитным двухатомный ион НГ  [c.548]

    Теория валентных связей правильно предсказывает наличие двух вариантов для числа неспаренных электронов, но не позволяет сделать выбор между ними. С точки зрения этой теории внутриорбитальные комплексы должны быть относительно инертными. Экспериментальные наблюдения, указывающие, что внешнеорбитальные комплексы обычно действительно более лабильны, чем внутриорбитальные комплексы, убеждают нас, что теория валентных связей представляет собой по меньшей мере шаг в правильном направлении. В свое время она явилась несомненным достижением, однако впоследствии была вытеснена теорией кристаллического поля и еще более совершенной теорией поля лигандов, или делокализованных молекулярных орбиталей. [c.228]

    Диаграмма молекулярных орбиталей молекулы ОН должна напоминать таковую для НР (см. рис. 12-12). На я-орбитали должен быть неспаренный электрон, локализованный на атоме кислорода. [c.522]

    Гораздо сложнее применить результаты, полученные при расчетах молекулярных орбиталей, к сверхтонкому расщеплению от взаимодействия с атомами, отличными от атома водорода. В отличие от протонов, для которых характерны только описанные выше прямой и косвенный механизмы СТВ, на сверхтонкое расщепление от взаимодействия с С влияют и другие факторы 1) Неспаренные электроны на р(п)-орбитали могут поляризовать заполненные 2s- и Ь-орбитали того же самого атома. 2) Может иметь место прямая делокализация электронной плотности на 2.5-орбиталь а-радикала. 3) Спиновая плотность на соседнем атоме углерода за счет поляризации ст-связи С — С может вызывать появление спиновой плотности на 2л- и 2р-орбиталях углерода, резонанс которого поддается интерпретации. Расчеты [10—13] для сверхтонкого расщепления, вызываемого " К, 8 и оказались более успешными, чем в случае С. Так, удалось интерпретировать спектры кремнийсодержащих радикалов [13]. Обнаружено, что влияние спиновых плотностей на соседних атомах для этих ядер имеет меньшее значение, чем для ядер С. [c.29]

    Метод молекулярных орбиталей. Расчеты по методу валентных связей очень сложны. Кроме того, этот метод не рассматривает вклад неспаренных электронов в образовании связи. [c.99]

    При /-=0 I F(O) р= l/я/ о (Го — радиус первой боровской орбиты).. Молекулярные орбитали могут быть представлены в виде линейной, комбинации атомных орбиталей. Для неспаренного электрона, находящегося на молекулярной орбитали, величина контактного взаимодействия определяется вкладом атомных s-орбиталей. Контактное взаимодействие изотропно, т. е. не зависит от ориентации пара-магнитны.к частиц по отношению к внешнему магнитному полю. Константа a сверхтонкого взаимодействия в единицах напряженности магнитного поля может быть выражена в виде [c.243]

    Как уже упоминалось, магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных тг-орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом. [c.454]

    ЭПР свободных электронов связан с парамагнетизмом их спинов. По этой причине его также называют электронным спиновым резонансом (ЭСР). Электроны на полностью заполненных молекулярных орбиталях вообще ие вносят вклад в магнитный момент, поскольку, согласно принципу Паули, спаренные спины компенсируют друг друга. Если, однако, связь разорвана вследствие гомолитического разрыва, то образуются свободные радикалы с неспаренными электронными спинами, которые и детектируются. Свободный электрон обладает магнитным моментом ц, равным [c.157]

    Альтернантные углеводороды, которые обладают нечетным числом атомов углерода, называются нечетными альтернантами . Соотношение парности связывающей и разрыхляющей молекулярных орбиталей для них остается справедливым кроме того, такие молекулы обладают несвязывающей орбиталью с энергией Е = а. которую занимает неспаренный электрон. Эта орбиталь локализована на атомах, отмеченных звездочкой на приведенной выше схеме, и имеет узел в месте расположения атомов, не отмеченных звездочкой. Самым лучшим из известных примеров является радикал бензила, для которого распределение неспаренного электрона легко рассчитывается. Ниже приведено распределение спиновой плотности и константы СТС протонов. [c.124]

    В зоне НР неспаренный электрон находится на несвязывающей молекулярной орбитали Я , (или я ) электронная конфигурация НР" . .. (ст)" (Я ,,у)3 орбиталь (или я ) локализована на атоме Р (это его 2р - или 2р,,-орбиталь) электронная конфигурация Нр- -(ст)"(Л ,,,) (ст ).  [c.522]

    Этот спектр убедительно свидетельствует о делокалпзаиии неспаоенно-го электрона комплекса на лиганде. Объяснить это можно только образованием ковалентных связей металл — лиганд, поскольку только ири смещивании волновых функций иона металла и лиганда можно получить вклады лиганда в молекулярную орбиталь комплекса, которая содержит неспаренный электрон. [c.23]

    Следует также отметить, что плотность неспаренното спина на атоме в молекуле не согласуется непосредственно с вкладами атомов в молекулярную орбиталь, содержащую неспаренный электрон. Последний эффект мы назовем плотностью неспаренного электрона. Неспаренный электрон на орбитали одного атома в молекуле может поляризовать спаренные спины opтoгoнaJ ьнoй а-связи, так что один из электронов будет большее время проводить в окрестности одного атома, чем в окрестности другого. В результате на ядре атома появляется плотность неспаренного спина, если даже на этом атоме и отсутствует плотность неспаренного электрона. Эта мысль будет более понятна, если мы рассмотрим следующий пример. [c.24]

    Если спин направлен вдоль поля в низкоэнергетической и против поля в на атомах 1 и 3 по сравнению с атомом 2 должно наблюдаться увеличение спиновой плотности, направленной вдоль поля. В 1 /1 при спиновой плотности, направленной против поля, на атоме 2 должна быть большая величина отрицательной спиновой плотности, чем на атомах I и 3. Таким образом, мы не переводим каких-либо неспаренпых электронов на старую орбиталь ф , а только влияем на распределение неспаренных спинов на трех атомах, что приводит к отрицательной (противоположной приложенному полю) спиновой плотности на С . Эта отрицательная спиновая плотность затем спип-поляризуется под действием электронной пары связи С — Н [см. обсуждение уравнения (9.11)] так, что спиновая плотность оказывается на атоме водорода. Обменное взаимодействие неспаренного электрона, находящегося на (главным образом, на С и С ), с парой электронов, находящихся на ф,, снижает энергию v по сравнению с Два атома водорода, связанные с концевым атомом углерода, неэквивалентны по симметрии, но до сих пор мы не говорили ни о каких эффектах, которые могли бы сделать их неэквивалентными с точки зрения распределения спиновой плотности. Такая неэквивалентность выявится с введением обменной поляризации, затрагивающей заполненные молекулярные а-орбитали. [c.28]

    Используя. метод Хюккеля для расчета МО в сопряженных органических системах,. можно с помощью соотношения Мак- Коннела приближенно определить для них константы протонного СТВ. Константа СТВ для -го протона а, выражается как a = Q() . где ру = j j — коэффициент различных атомных 2р-орбиталей углерода в. молекулярной орбитали, на которой находится неспаренный электрон. [c.59]

    Решение, У каждого атома В атомные орбитали Ь, 25 , 2р . Магнитные свойст)за молекулы Вз указывают на то, что у молекулы есть неспаренные Электрэны. При заполнении молекулярных орбиталей электронами используем правило Хунда. Тогда электронную конфигурацию молекулы Вг можно записать  [c.17]

    Молекула О2 — б и р а д и к а л. Наличие двух неспаренных электронов в молекуле обусловливает ее парамагнитизм — факт, которому только теория молекулярных орбиталей смогла дать объяснение. До этого считали все электроны в молекуле О2 спаренными. В молекуле О2 избыток связывающих электронов составляет всего две пары, двойная связь должна быть менее ррочной, чем тройная в молекуле N2. Энергия диссоциации молекулы кислорода Од(Ог) =5,П6 эВ и межъядерное расстоянив-г (02) = 1,207 Ю м (1,207 А) отвечают представлениям о двойной связи. Эту двойную связь можно обозначить как о л . [c.80]

    Свободные радикалы, обладая неспаренным электроном в одной из молекулярных орбиталей, являются весьма активными компонентами как нефтей, так и любых нефтяных фракций, поэтому они, наряду с олефинами, могут быть активной хруппой цродуктов вторичного происхождения. [c.18]

    Черточки в формуле метана пpeд тaвJ яют собой ковалентные химические связи. Для их образования необходимо пространственное перекрывание атомных орбиталей, на каждой из которых может находиться один неспаренный электрон. В результате при таком перекрывании образуется одна молекулярная орбиталь с двумя электронами с противоположными спинами. Значит, чтобы атом углерода мог вступить в реакцию, как говорят, он должен перейти в возбужденное состояние [c.26]

    Рассмотрение можно продолжить с целью расчета энергии алкильных радикалов, если предположить, что один неспаренный электрон радикализованного атома углерода занимает 2рл-молекулярную орбиталь и не влияет на взаимодействие других электронов, находящихся на своих орбиталях. Напомним, что данное предположение согласуется с результатами исследований методом ЭПР [4]. Энергию диссоциации связи Н]—Ка можно выразить теперь через электронные составляющие  [c.106]

    Для пятиатомных радикалов АВ4 можно было бы предполагать тетраэдрическую конфигурацию, но согласно теореме Яна — Теллера для трижды вырожденных дублетных электронных состояний р1 и р2 (при одном неспаренном электроне 5=72, а мультиплетность равна 2) правильные тетраэдрические конфигурации внутренне нестабильны. Изменение симметрии радикала от Та до Сги может быть обусловлено как возмущением Яна —Теллера, так, например, и несимметричным внешним окружением, когда соседние катионы располагаются относительно атомов В радикала таким образом, что эффективная симметрия понижается. Если радикал имеет конфигурацию искаженного тетраэдра, то интерес представляют степень искажения и выяснение вклада разрыхляющих, связывающих и несвязывающих молекулярных орбиталей (например, симметрии а и /2) в конечное состояние. Эта задача в принципе решается с привлечением спектроскопии ЭПР. [c.70]

    Радикальный механизм окисления масел. Механизм окисления масел заключается в первоначальном образовании короткоживущих и высокореакционноспособных частиц — радикалов. Сам кислород является бирадикалом — на высших занятых электронами его молекулярных орбиталях располагаются два неспаренных электрона. В силу этого кислород является химически активным веществом. На начальной стадии он реагирует с углеводородол масла. Наиболее чувствительны при этом насыщенные углеводороды — алканы с третичным атомом углерода  [c.663]


Смотреть страницы где упоминается термин Неспаренный электрон молекулярная орбиталь: [c.381]    [c.141]    [c.124]    [c.143]    [c.26]    [c.26]    [c.27]    [c.175]    [c.177]    [c.178]    [c.179]    [c.183]    [c.224]    [c.247]    [c.77]    [c.397]   
ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Неспаренный электрон

Орбиталь молекулярная

Электронные орбитали



© 2025 chem21.info Реклама на сайте