Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры в кристаллическом состоянии и их деформационные свойства

    Грубой моделью аморфно-кристаллического полимера является сетка, узлы которой образованы кристаллитами, играющими роль зажимов, а деформационные свойства обусловлены аморфными сочленяющими участками, состоящими из проходных цепей. Доля этих цепей составляет обычно 30—40%. Таким образом, классическое понятие фазы и агрегатных состояний (твердое — жидкое) здесь неприменимо, и кристаллит постепенно переходит в аморфную область без четкой границы раздела. [c.73]


    Несмотря на внешнее сходство процессов развития шейки в деформируемом кристаллическом полимере при температурах выше и ниже температуры стеклования, механизм ее образования для полимеров в высокоэластическом состоянии существенно различен. Испытание полимерных пленок на растяжение в жидкостях позволяет судить о механизме структурных перестроек в шейке по закономерностям поглощения жидкостей и изменения деформационных свойств. [c.170]

    Изменение интенсивности теплового движения сегментов макромолекул приводит к изменению деформационных свойств. Поэтому аморфные полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Кристаллические полимеры могут находиться также в кристаллическом состоянии. [c.44]

    Если линейный эластомер находится в кристаллическом состоянии (кривая 3), то при нагревании вплоть до температуры плавления Гдл он находится в твердом состоянии, но обладает различной жесткостью ниже и выше температуры стеклования при 7 с<7 пл- Это связано с тем, что некристаллическая (аморфная) часть полимера ниже Tq находится в стеклообразном состоянии, а выше — в высокоэластическом. В тех случаях, когда степень кристалличности эластомера мала, то выше Тс он ведет себя (по деформационным свойствам) практически как некристаллический эластомер повышенной жесткости. [c.15]

    Интересно, как изменяются деформационные свойства полимера одного и того же химического строения при переходе от аморфного высокоэластического к кристаллическому состоянию. Ответить на этот вопрос трудно, потому что в процессе испытаний структура не должна заметно изменяться, и, кроме того, при одной и той же температуре полимер должен длительное время находиться как в аморфном, так и в кристаллическом состоянии, В числе таких полимеров можно назвать натуральный каучук. [c.259]

    Надмолекулярные структуры и кристаллические образования, которые могут присутствовать в блочных полимерах в довольно больших количествах (70—90% у ПЭ, 95—98% у политетрафторэтилена и даже до 100% у полимерных монокристаллов), влияют на характер релаксационных процессов. Главной особенностью деформационных свойств полимеров, находящихся в стеклообразном состоянии, является их сильная зависимость от величины прилагаемой нагрузки. Причем, если при малых напряжениях характер изменения физических свойств объясняется линейной теорией вязкоупругости, то при высоких напряжениях необходимо использовать нелинейную теорию [4]. С учетом основных процессов молекулярной релаксации деформацию стеклообразных полимеров можно описать, используя пятиэлементную модель (рис. II. 14), отдельным элементам которой соответствует конкретный физический смысл. Так, пружина с модулем Ео описывает идеально упругую составляющую деформации, связанную с деформацией валентных углов и изменением межатомных расстояний. Элементу Кельвина Ех — т] приписывается молекулярный процесс, связанный с подвижностью боковых привесков основной полимерной цепи. Если полимерный материал подвергается внешнему воздействию в температурном интервале, где реализуется такой релаксационный процесс, то это может привести к ориентации [c.169]


    Полимеры в кристаллическом состоянии и их деформационные свойства [c.113]

    Ясно, что кристаллические участки нельзя рассматривать просто как твердые частицы инертного наполнителя. Будучи связаны с аморфными частями множеством проходных молекул, опи приобретают роль зажимов , скрепляющих подвижные цепи и в той или иной мере структурируют полимер в целом. Поэтому деформационные свойства аморфно-кристаллических полимеров сильно зависят от степени кристалличности. При весьма низких ее значениях такие полимеры еще мало отличаются от обычных линейных аморфных полимеров, но с ростом этой величины они все более приобретают свойства, присущие эластомерам (см. главу VI). Пластические деформации для такого состояния не характерны, что же касается высокоэластических деформаций, то уровень их тем ниже, чем больше степень кристалличности. При высоких ее значениях полимер становится жестким, и в практике ТМА для него обычно деформируемость принимают равной нулю, как и для застеклованных образцов. Однако при достаточной величине действующих усилий в них может развиваться своеобразный вид больших деформаций, заключающийся во взаимном перемещении не отдельных макромолекул либо их сегментов, а элементов надмолекулярной структуры — кристаллитов и более крупных образований [59]. Растяжение таких образцов часто происходит с формированием характерной шейки — утоненного участка с высокой степенью ориентации кристаллитов. [c.114]

    Во-вторых, при вытяжке возникает анизотропия свойств полимера из-за изменения характера молекулярной ориентации, вследствие чего возрастает жесткость в направлении растяжения. Это наиболее общее явление, присущее как аморфным, так и кристаллическим полимерам. (Следует подчеркнуть, что теории механической анизотропии свойств, рассматривавшиеся в разделах 10.6 и 10.7, относятся к конечному состоянию ориентированных материалов и неприменимы для объяснения эффекта деформационного упрочнения.) [c.298]

    Изучение свойств лиофильных коллоидов и отчасти исследования органозолей металлов явились для ученого переходным этапом от чистой коллоидной химии к проблемам только зарождавшейся в то время полимерной науки, в разработку которых он включился в середине 30-х годов. С этого времени его научная деятельность была почти пол ностью посвящена исследованиям высокомолекулярных соединений, или, как он сам это называл, изучению полимерного состояния вещества . За многие годы творческого труда В. А. Каргин сумел внести существенный вклад почти во все важнейшие разделы химии и физики полимеров. Природа полимерного состояния вещества и теория растворов, деформационные процессы в полимерах и природа ориентированного состояния, строение макромолекул и природа надмолекулярных образований, возникающих в процессах полимеризации, химических превращений макромолекул и при формировании полимерных тел из растворов и расплавов. Большое внимание в исследованиях В. А. Каргина было уделено процессам кристаллизации полимеров, свойствам кристаллических полимерных тел, процессам структурообразования в природных и синтетических по. лимерных электролитах, их свойствам в растворах и в твердом состоянии. [c.6]

    Во введении указывалось, что специфической особенностью полимерных материалов является их способность претерпевать большие обратимые деформации. Это свойство наиболее ярко проявляется у каучуков (деформации >1000%), которые при температуре выше температуры стеклования представляют собой слабо сшитые полимеры. Это полезное свойство до некоторой степени сохраняется и у полукристаллических полимеров. В каучуках при температурах выше температуры стеклования меж- и внутримолекулярные взаимодействия слабы так что их растяжение легко осуществить, и последующее возвращение в исходное состояние происходит без затруднений. В полукристаллических полимерах в кристаллических областях между молекулами осуществляются кооперативные взаимодействия, удерживающие сегменты друг с другом в строгом порядке, и существенную роль при деформации таких полимеров играют межмолекулярные взаимодействия в менее упорядоченных областях. При температурах выше температуры стеклования влияние этих сил настолько заметно ослабляется, что становится возможным вращение относительно связей между мономерными звеньями. Таким образом, выполняются требования, необходимые для проявления высокой эластичности (рис. 1). Межмолекулярные силы вызывают вязкое сопротивление, которое затрудняет протекание обратных процессов. Так, при относительных деформациях более нескольких процентов обратные процессы редко протекают до конца, хотя степень обратимости деформационных процессов можно повысить путем ослабления межмолекулярных взаимодействий, нагревая образец или вводя в него низкомолекулярные вещества, в которых он набухает. При температурах ниже температуры стеклования вращение вокруг ординарных связей затрудняется и образец становится труднее де- [c.26]


    Рассмотрим теперь подробнее деформационное поведение полимерных материалов. Мы знаем, что большинство полимеров при температуре эксплуатации являются частично кристаллическими, т.е. содержат как кристаллические, так и аморфные компоненты. Если аморфный компонент частично кристаллического полимера находится в стеклообразном состоянии, то в этом случае и аморфная и кристаллическая части полимера обладают эластическими свойствами, а если же аморфный компонент находится в каучуковом состоянии, то он обладает вязкоупругими свойствами. Несшитые эластомерные материалы и полимерные расплавы также характеризуются наличием вязкотекучих свойств. [c.340]

    Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления Гпл (или кристаллизации Тк) он будет твердым, обладая при этом различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 3 на рис. 1.15). Это связано с тем, что некристал лическая (аморфная) часть полимера ниже Тс находится в стеклообразном, а выше — в высокоэластическом состоянии. В тех случаях, когда полимер слабо закристаллизован, выше Тс он ведет себя в отношении деформационных свойств как некристаллический полимер или как эластомер повышенной жесткости. [c.33]

    Деформационные свойства кристаллических полимеров. Кристаллические полимеры, как было сказано в гл 1, состоят из кристаллических и аморфных участков Кристаллические участки деформируются как упругие твердые тела за счет смещения атомов в решетке, деформации связей и углов. Аморфные прослойки в зависимости от условий (температуры и скорости) могут деформироваться как стеклообразные при Г Гс), высо-коэластические (Гт>7 >7 с) или вязкотекучис (7 >Гт)- Кристаллические полимеры отличаются от аморфных повышенными значениями модуля упругости, пО Шженной податливостью, меньшей восстанавливаемостью. Но сочетание жестких кристаллических и податливых (аморфных) участков делает кристаллические полимеры менее хрупкими, чем стеклообразные. Деформационная кривая кристаллического полимера по внешнему виду напоминает кривую стеклообразного полимера (рнс. 5.28). На ней также можно выделить три участка. На первой стадии расгяжс.чия (линейный участок) развиваются упругие обратимые деформации, увеличивающие свободный объем в полимере. Модуль упругости (наклон прямой) тем больше, чем выше степень кристалличности. На этой стадии разрушается исходная кристаллическая структура На // стадии проис.ходит перестройка исходной кристаллической структуры и образование новой в условиях напряженного состояния Этот процесс называется рекристаллизацией. Образец в каком-то месте (на [c.314]

    В стеклообразном состоянии (см. рис. 29) при малых напряжениях в полимере возникает только упругая деформация с модулем Юнга 200—600 кгс/мм (для стали модуль Юига равен 20 ООО кгс/мм--). При больших напряжениях деформационные свойства. аморфных полимеров сложнее В стеклообразном состоянии, в котором пластмас-сы находятся при обычных, а каучуки и резины при низких температурах, растяжение аморфного полимера (рис. 33) внешне пронсходит так же, как и кристаллического, Когда условное напряжение достигает так называемого предела вынужденной эластичности (точка А), в наиболее слабом месте образца образуется шейка , в которую постепенно переходит весь образец (участок А Б). Затем тонкий образец еиде несколько растягивается до разрыва (участок ББ). [c.69]

    П. полимерных материалов тесно связана с их деформационными свойствамп. Разрыв полимеров в большинстве случаев происходит в орпептированном состоянии, полученном либо предварительно (напр,, в В0Л0К1ШСТЫХ материалах), лпбо возникающем в процессе испытания на разрыв. Даже в хрупком состоянии П. полимера может сильно изменяться в зависимости от степени предварительной вытяжки. Предварительно ориентированный полимер представляет собой высокопрочный аш1зо-тропный материал. Основным фактором упрочнения полимера является молекулярная ориентация независимо от того, находятся ли волокна в кристаллическом или аморфном состоянин (см. Механические свойства полимеров). [c.195]

    Таким образом, применимость для описания упругости реальных сеток уравнения Муни — Ривлина (1.3), а не простого соотношения (1.2) для идеальной сетки гауссовых субцепей отражает неидеальность деформационного поведения реальных сеток, связанную с конечными размерами макромолекул и наличием межмолекулярных взаимодействий. Как было отмечено во Введении, неидеальность поведения разбавленных растворов полимеров в хороших растворителях обусловлена эффектами исключенного объема, что проявляется в необходимости учета собственной толшины макромолекул. Вероятно, именно по этой причине неидеальность упругих свойств реальных сеток, выражаемая отношением С2/С1 проявляет корреляцию с толщиной макромолекулы [36]. Наблюдается также прекрасная корреляция между С2/С1 и отношением удельных объемов полимера в кристаллическом и аморфном состоянии ис/Уа (рис. 1.2), физический смысл которого как меры остаточной упорядоченности расплава будет раскрыт в разд. 1.5. Молекулярная интерпретация отношения С2/С1 дана в работах Флори (см., например, [37]), [c.36]

    Прочностные свойства и деформационное поведение пленок наглядно иллюстрируется диаграммой растяжения, представленной на рис. 4.2. Вид деформационной кривой зависит от физического и фазового состояния полимера и условий деформации температуры и скорости нагружения. На кривых е = /(о) можно выделить несколько участков, характеризующих различные стадии процесса деформации. Начальный, обычно прямолинейный для застеклованных и кристаллических полимеров участок А соответствует деформации, которая подчиняется закону Гука  [c.71]


Смотреть страницы где упоминается термин Полимеры в кристаллическом состоянии и их деформационные свойства: [c.157]   
Смотреть главы в:

Термомеханический анализ полимеров -> Полимеры в кристаллическом состоянии и их деформационные свойства




ПОИСК





Смотрите так же термины и статьи:

Деформационные свойства

Деформационные свойства кристаллических полимеров

Полимер три состояния

Полимеры кристаллические, свойства

Свойства и состояние тел

Состояни кристаллическое

Состояние кристаллическое



© 2025 chem21.info Реклама на сайте