Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кельвина элементов

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Отличие данных моделей в том, что для тела Максвелла складываются деформации вязкого и упругого элементов, а для тела Кельвина-Фойгта складываются напряжения сдвига. Поэтому при постоянной деформации в теле Максвелла наблюдается релаксация напряжений, а в теле Кельвина-Фойгта при постоянном напряжении сдвига наблюдается рост деформации (упругое последействие) [63]. [c.49]

    Класс вязкоупругих материалов в качестве простейших представителей этого класса включает вязко-упругую жидкость (тело Максвелла) и вязкоупругое твердое тело (тело Кельвина). Механическая модель вязкоупругой жидкости представляет собой последовательно соединенные элементы упругого и вязкого сопротивлений, а модель вязкоупругого твердого тела — те же элементы, соединенные параллельно. Примером вязкоупругой жидкости является полиизобутилен, а примером вязкоупругого твердого вещества — набухшая в масле резина. [c.671]

    Приведенная здесь таблица содержит данные о стандартных энтальпиях (АЯ") и свободных энергиях (AG°) образования соединений из элементов в их стандартных состояниях, выраженные в килоджоулях на моль, а также термодинамические (вычисленные из третьего закона), или абсолютные, энтропии (S") соединений в джоулях на кельвин на моль все эти данные относятся к температуре 298 К. Фазовое состояние соединения указывается следующим образом (г.)-газ, (ж.)-жидкость, (тв.)-твердое вещество, (водн.) - водный раствор в некоторых случаях указывается также кристаллическая форма твердого вещества. Соединения расположены в таблице по номерам групп главного элемента, при установлении которого металлам отдается предпочтение перед неметаллами, а О и Н рассматриваются как наименее важные элементы. [c.448]

    Ползучесть линейного полимера хорошо описывается также объединенной механической моделью, сочетающей модель Максвелла и модель Кельвина — Фойхта (рис, 9.8). На рис. 9.9 показаны кривая ползучести и кривая упругого последействия, построенная в соответствии с объединенной моделью. К моменту времени / общая деформация складывается из мгновенно упругой (пружина, 1-й элемент), замедленно упругой, эластической (2-й элемент) и необратимой вязкой (3-й элемент, поршень)  [c.124]


Рис. 6L Элементы Максвелла (й) я Кельвина (5). Рис. 6L <a href="/info/660547">Элементы Максвелла</a> (й) я Кельвина (5).
    К — любой элемент, входящий в состав данного вещества К — кельвин (градус температуры международной термодинамической шкалы)  [c.10]

    Однако модель Максвелла не учитывает эластичности, возникающей за счет раскручивания макромолекул и отличающейся от гу-ковской упругости. Для развития этой деформации необходим определенный промежуток времени. Такая запаздывающая упругая деформация представлена моделью, предложенной Кельвином и Фойгтом (независимо). Общее напряжение в модели (т) складывается из напряжений, возникающих в каждом из элементов. Реологическое уравнение этой модели имеет вид  [c.23]

    Килограмм равен массе международного прототипа килограмма Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в 0,012 кг углерода-12 Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Это наименование и его обозначение применяются также для выражения интервала и разности температур Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на участке проводника длиной 1 м силу взаимодействия, равную 2-10 Н Ньютон равен силе, сообщающей телу массой 1 кг ускорение 1 м/с в направлении действия силы [c.477]

    Механическая модель материалов, характеризующихся многообразием запаздывающих процессов, может быть представлена в виде суммы элементов Кельвина—Фойхта, соединенных последовательно, а податливость суммы кинетических элементов, состоящей из т членов, описывается формулой [c.125]

    Рассмотрим вторую модель (тело Кельвина) — параллельное соединение упругого и вязкого элементов (рис. 107, а). В этой модели нижний конец пружины закреплен неподвижно. [c.277]

    Рассмотрим вторую модель — тело Кельвина — параллельное соединение упругого и вязкого элемента (рис. XIV. 6, а). В этой модели нижний конец пружины закреплен неподвижно. Примером тела Кельвина является набухшая в масле резина. [c.270]

    Реология конкретных систем может быть наглядно выражена с помощью механических моделей. Комбинации моделей простых тел — идеально-вязкого (ньютоновского — N), идеально-упругого (гу-ковского — Н) и дополнительной нагрузки, символически представленной как элеменг сухого трения (тело Сен-Венана — 81У), позволяют синтезировать более сложные системы. Последовательное сочетание упругого и вязкого элементов (Н — N) дает релаксационное тело Максвелла (М), а параллельное сочетание этих элементов (Н/К )— тело Кельвина (К), характеризующееся упругим последействием. Для упруго-вязко-пластичных релаксирующих систем типа глинистых суспензий и паст, цементных растворов, мучного теста и т. п., обладающих начальной прочностью и упругим последействием применяются еще более сложные модели, например тело Шведова [Н (М/31У) ] или его упрощенные модификарии — нерелаксирующее тело Бингама [Н — (К/81У)] или тело Бюргерса [М — К], не имеющее элемента сухого трения, но обладающее упругим последействием [27 ]. Набор пружин (Н), поршней (N) и ползунов (81У), образующих модели этих тел, имеет различные вязкости т), упругости Е и силы трения /, позволяющие зачастую на полуколичественном уровне воспроизводить поведение ряда систем [25]. При этом представляется возможным выбрать подходящую модель и определить наименьшее количество независимых переменных — реологических параметров и условных величин, которые необходимы для ее характеристики [20]. [c.231]

    Наиболее широко встречаются в практике вязко-упругие и упруго-вязкие тела. В вязко-упругих телах упругая часть образует непрерывную, обратимо деформируемую фазу, которая окружает вязкие элементы. Движение последних в ходе процесса деформирования позволяет им поглощать энергию и задерживать изменение -упругой фазы. Поведение вязко-упругих тел можно описать моделями Кельвина и Фойгта. [c.67]

Рис. 61. Элементы Максвелла (а) я Кельвина б). Рис. 61. <a href="/info/660547">Элементы Максвелла</a> (а) я Кельвина б).

    Высокоэластичность коагуляционных структур, образованных переплетением волокнистых частиц, а также цепных макромолекул, связана прежде всего с деформируемостью самих волокон и макромолекул. Как известно, уравнения, основанные на простых механических моделях Максвелла (последовательно соединенные упругий и вязкий элементы) и Кельвина—Фойгта (параллельно соединенные упругий и вязкий элементы), не позволяют количественно описать поведение высокоэластичных систем. В современной литературе получило широкое распространение описание кинетики эластической деформации и релаксации напряжений в таких системах с помощью представления о спектре периодов релаксации, соответствующем сочетанию множества упругих и вязких элементов [35]. Вместе с тем, как показала Л. В. Иванова-Чумакова [36], кинетика развития и спада высокоэластической деформации ряда высокомолекулярных структурированных систем может быть описана простыми уравнениями следующего вида  [c.20]

    Решение. Полная деформация модели при последовательном соединении элементов складывается из деформаций элемента Гука и модели Кельвина — Фойгта  [c.205]

    Таким образом, полная деформация стандартного линейного тела складывается из мгновенной и запаздывающей упругих компонент, что особенно характерно для эластомеров. Для линейных полимеров лучше подходит модель Бюргерса, состоящая из последовательно соединенных элементов Кельвина — Фойхта и Максвелла. Общая деформация такой модели записывается в виде (рис. 2.7)  [c.41]

    Это уравнение отвечает механической модели, состоящей из параллельного сочетания упругого и вязкого элементов, получившей название тела Кельвина (рис. 2, а). [c.165]

    Более общей моделью, отражающей как упругое последействие, так и релаксацию, является модель, состоящая из последовательного сочетания элементов Максвелла и Кельвина (рис. 3, а). Эта модель была разобрана Френкелем и Образцовым. Для случая Т], = оо она использовалась в ряде механических задач. [c.166]

Рис. 3. Модель, состоящая иа последовательного сочетания элементов Максвелла и Кельвина Рис. 3. Модель, состоящая иа <a href="/info/1897047">последовательного сочетания</a> <a href="/info/660547">элементов Максвелла</a> и Кельвина
    По аналогии с динамическими характеристиками, которые были введены для элемента Максвелла, можно получить соответственно вязкоупругие функции и для элемента Кельвина—Фойхта - 1  [c.32]

    Рассмотрим работу, совершаемую внешней силой, вызывающей деформацию элемента Кельвина—Фойхта по гармоническому закону. Пусть эта внешняя сила изменяется по закону  [c.32]

    Значительно легче представить себе реакцию элемента Кельвина — Фойхта на действие постоянной нагрузки, рассмотрев эффект упругого восстановления, при котором а = О, Здесь [c.90]

    Деформация у в таком теле под действием постоянной нагрузки Ро развивается во времени. Скорость ее снижается, так как на упругий элемент Гука приходится все большее усилие. Когда скорость деформации уменьшится до нуля, деформация достигнет максимального значения. При условии постоянного напряжения Ро математическая модель тела Кельвина — Фойгта примет вид [c.362]

    Пружина и амортизатор при параллельном соединении (рис. IV.9, б) образуют элемент Кельвина — Войгта, в котором они испытывают одинаковые деформации. Амортизатор оказывает тормозящее сопротивление упругой деформации пружины. [c.220]

    Уравнение (IV.36) представлено моделью (рис. IV.9, в), состоящей из элемента Максвелла и элемента Кельвина — Войгта, соединенных последовательно. Выражение, включающее полную деформацию, имеет вид  [c.220]

    Для полной механической аналогии упруго-вязкого режима, представленного линейным уравнением (IV. 29), модель должна была бы содержать бесконечное число последовательных элементов Кельвина — Войгта, имитирующих деформацию запаздывающей упругости (рис. IV.И). [c.221]

    Для стеклообразных полимеров особенно важна способность выдерживать длительное действие внешней силы (нагрузки) при сохранении размеров в заданных пределах. Это определяется величиной и закономерностями ползучести. На рис. 10.6 показаны кривые ползучести полистирола при разных нагрузках. Видно, что при нагружении мгновенно увеличивается длина образца за счет развития упругой деформации (деформация пружины). Далее развивается замедленная упругость, качественно аналогичная развитию высокоэластической деформации (элемент Кельвина — Фойхта). Эта замедленная упругость характеризует развитие вынужденно-эластической деформации. Далее возможны два случая либо деформация перестает увеличиваться после достижения определенной величины, либо она развивается непрерывно. В первом случае мы говорим, что имеет место затухающая ползучесть, во втором случае — незатухающая ползучесть. Последняя развивается как за счет истинно необратимой, так и за счет замедленной вынужденноэластической деформации без образования шейки. Полимер может применяться как конструкционный материал только в том случае, если под действием заданной нагрузки в нем развивается затуха- [c.151]

    Молекулы представляют собой частицы вещества, состоящие из атомов, соединенных друг с другом химическими связями. Представление о молекулах впервые было введено в химии в связи с необходимостью отличать молекулу как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав молекулы. В физике предположение о существовании молекул было введено для объяснения термодинамических и кинетических свойств жидкостей и газов. Оформление молекулярных воззрений в научную теорию принадлежит М. В. Ломоносову. Развивая атомистические идеи, основанные на понятии о молекуле как частице вещества, являющейся носителем eroi физических и химических свойств, он открыл закон сохранения материи и количества движения, вскрыл природу теплоты, установил, что теплота связана с движением молекул и является одной из форм обмена энергией между телами, доказал, что давление газа на стенки возникает в результате удара отдельных молекул, предсказал существование нуля Кельвина температуры, положил начало развитию атомистической химии и молекулярно-кинетической теории в физике, поставил вопрос о познании строения молекул. [c.113]

    Модель Кельвина — параллельное соединение тех же линейных элементов — упругости и вязкости (рис. XI—10). В этом случае деформации обоих элементов одинаковы, а напряжения сдвига суммируются т = тс+т . Наиболее интересным режимом деформирования здесь является приложение постоянного напряжения сдвига т = = То = onst. В отличие от модели Максвелла, вязкий элемент не позволяет немедленно реализоваться деформации упругого элемента. [c.313]

    Модель Кельвина — паргшлельное соединение линейных элементов, т. е. упругости и вязкости (рис. Х1-10). В этом случае деформации обоих элементов одинаковы, а напряжения [c.372]

    Экспериментально установлено, что при течении дисперсных систем в области неразрушенных структур имеет место наложение деформаций сдвига (принцип аддитивности). Применение модельного анализа для определения вида деформации е (т), при помощи которого условно заменяют данную реальную систему схемой последовательных и параллельных совокупностей идеально упругих и вязких или пластично-вязких элементов, позволяет в каждом отдельном случае ориентироваться в числе независимых характеристик механических свойств этой системы и проследить в полуколичественном соотношении с экспериментальными данными все основные деформационные и релаксационные свойства неразрушенных структур. Кривые е (т) многих дисперсных систем могут быть с достаточной точностью описаны при помощи последовательно соединенных моделей Максвел-ла — Шведова и Кельвина (рис. 4). Модель Максвелла — Шведова состоит из пружины с модулем i, последовательно связанного с ним вязкого элемента, моделирующего наибольшую пластическую вязкость t]i, который блокирован тормозом на сухом трении, моделирующим предел текучести Р х- Модель Кельвина содержит упругий элемент с модулем и параллельно связанный с ним задерживающий вязкий элемент (демпфер), моделирующий вязкость упругого последействия rjj. [c.20]

    Впервые поведение упруго-вязкого те моделировал Максвелл системой пo лeJ ва тел ьно соединениьгх пружины (упруг деформация) и поршня, движущегося вязкой Среде (необратимая деформация чения) (рис. 61,13). Кельвин, а позд Фойгт моделкровали поведение вязко-угг( того тела поведением системы, состоят из пружины и вязкого элемента, с оедиш ных параллель[10 (рис, 61,6). [c.160]

    Если к модели Кельвина — Фойгта последовательно присоединить вязкий элемент т], приводящий, как и в случае модели Максвелла, к необратимому течению, то при о = onst закон деформации имеет вид  [c.217]

    Возможны и другие, в том числе более сложные сочетания основных реологических элементов, адекватные реальным материалам. В частности, последовательное соединение тел Максвелла и Кельвина, сочетание вязкоупругости и гшастичности в одном материале и т. д. [c.673]

    Как показал Малмейстер [126], оно имеет некоторый физико-статистический смысл. Это уравнение описЫ(Вает механическую модель, составленную из последовательно соединенных элементов Гука и Кельвина — Фойхта. [c.41]

    Для оценки ползучести целесообразно использовать обобщенную модель Кельвина — Фойхта [164]. Она состоит из группы простейших элементов, соединенных последовательно, причем возможны некоторые модификации, например дополнительное последовательное присоединение элементов Гука, и Ньютона. Возникающая при этом вязкоупругая система напоминает модель Бюргерса, отличаясь от нее большой универсальностью в описании высокоэластической составляющей общей деформации. [c.42]

    Предположим, что г) = оо, т. е. что мы имеем последовательное сочетание идеально упругой пружины Гука и элемента Кельвина [Е,, 112), и рассмотрим поведение такой системы. При е = е(, = = onst (в первый момент мгновенного задания деформации) [c.167]

    Сопоставление механических характеристик элемента Кельвина—Фойхта с механическими характеристиками реальных полимеров указывает на существование качественного сходства. Однако попытки количественного описания поведения реальных полимеров при помощи уравнения движения модели Кельвина—Фойхта наталкиваются на такие же затруднения, что и при использовании однокомпонентной модели Максвелла. [c.34]


Смотреть страницы где упоминается термин Кельвина элементов: [c.200]    [c.21]    [c.24]    [c.160]    [c.152]    [c.166]    [c.167]    [c.31]    [c.31]   
Современная общая химия Том 3 (1975) -- [ c.191 ]

Современная общая химия (1975) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Кельвина



© 2025 chem21.info Реклама на сайте