Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры кристаллические, свойства

    Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. [c.359]


    Следует отметить, что метод ЭПР дает возможность изучения кинетики радикальной полимеризации и радикалов, образовавшихся в результате тех или иных воздействий. ЭПР является основным средством изучения полимеров, обладающих полупроводниковыми и магнитными свойствами. ЯКР имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимеры кристаллических порошков, содержащих такие ядра, дает возможность оценивать их внутренние напряжения. [c.230]

    В последнее время важное значение придается влиянию надмолекулярных структур на механические свойства полимеров. Полимеры, обладающие после синтеза определенной структуро и свойствами, могут приобрести иной комплекс свойств при перестройке их надмолекулярных структур. Прочность ориентированных полимеров зависит не только от совершенства молекулярной ориентации, но и от характера надмолекулярной структуры. Большое разнообразие надмолекулярных структур позволяет получить многообразие свойств в пределах каждого физического состояния полимера кристаллического, стеклообразного и высокоэластического. [c.127]

    Заслуживает особого внимания открытие метода синтеза высокомолекулярного полимера углерода (карбина) (Сладков, Касаточкин, Кудрявцев, Коршак [324]). Исходным веществом служит ацетилен реакция осуществляется в среде органического основания в присутствии солей меди и хлорного железа. Как показали исследования свойств и строения полимера, кристаллическая фракция карбина содержит до 2000 атомов углерода в цепочке и представляет собой новую аллотропную его модификацию-, обладающую свойствами полупроводников с электронной проводимостью. [c.44]

    Повышения температуры плавления гибкоцепного полимера можно достигнуть не только варьированием скорости и температуры кристаллизации, но и его растяжением. Такое явление особенно характерно для аморфных кристаллизующихся эластомеров и известно как ориентированное состояние полимеров. Поэтому различают понятия кристаллический и кристаллизующийся полимер. Это различие связано с релаксационными явлениями в полимерах. Кристаллическим называют полимер, в котором кристаллическая структура (независимо от ее количества) создана в процессе синтеза полимера, т. е. сформирована одновременно с формированием самих макромолекул. Кристаллизующимся называют полимер, который при синтезе получается аморфным, а кристаллические структуры возникают в нем в процессе деформации (обычно растяжения) при ориентации макромолекул в направлении деформации. Общим свойством кристаллических и кристаллизующихся полимеров является невозможность разделения образца на кристаллическую и аморфную фазы, так как в процессе формирования кристаллической структуры одна и та же макромолекула может входить и в кристаллическую, и в" аморфную области. Прочность и относительное удлинение ориентированных полимеров выше, чем у кристаллических полимеров из-за направленного расположения макромолекул. [c.29]


    Наиболее ценными для инженерного применения являются кристаллические полимеры средней степени кристалличности. Полимеры с низкой степенью кристалличности по своим свойствам близки к аморфным слабосшитым полимерам. Кристаллические области, выполняя функции поперечных связей между макромолекулами, не позволяют развиваться необрати.мым деформациям. Однако при повышенных температурах кристаллиты плавятся и появляется способность к течению. Сюда относятся пластифицированный поливинилхлорид и некоторые виды эластичных полиамидов. Область перехода из стеклообразного в каучукоподобное или вязкотекучее состояние у таких полимеров, как правило, очень широкая. [c.116]

    При переработке кристалло-аморфных полимеров из расплава могут возникать локальные ситуации типа рассмотренной, что в свою очередь может привести к сосуществованию в переработанном полимере кристаллических морфоз разных типов,, по-разному влияющих на механические свойства. [c.347]

    ВНЕШНИЙ ВИД ТЕЛЛУРА. Кристаллический теллур больше всего похож на сурьму. Цвет его — серебристо-белый. Кристаллы — гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор по ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы. [c.68]

    Наблюдан)щиеся особенности свойств кристаллических полимеров принято объяснять наличием в них аморфной фазы, хотя принципиально возможно, что эти особенности связаны с иным строением кристаллов высокополимерных веществ. Этот важный вопрос практически никогда не рассматривался и был обсужден лишь в последнее время [2—8]. Более того, при рассмотрении механических свойств кристаллических полимеров кристаллической фазе обычно отводится второстепенное место, так как считается, что кристаллические полимеры двухфазны, причем определяющей механические свойства является аморфная фаза, способная кристаллизоваться при деформации. Одна]<о совсем недавно [2—6, 9] высказана противоположная точка зрения, состоящая в том, что основную роль при деформации кристаллических полимеров играют кристаллы полимеров. Поэтому необходимо подвергнуть анализу накопившиеся фактические данные о кристаллах полимеров и установить, какая из этих точек зрения подтверждается опытом. Необходимо также выделить те теоретические и экспериментальные вопросы, разрешение которых позволит подойти к построению теории физических свойств кристаллических полимеров. [c.78]

    Справочник содержит сведения о физико-химических и физических свойствах мономеров и полимеров, необходимые для исследовательской и аналитической работы в области химии высокомолекулярных соединений. Приводятся физико-химические константы мономеров, константы скоростей реакции, сополимер изации и другие величины, характерные для синтеза полимеров, а также данные для определения молекуля ых весов полимеров, размеров макромолекул и химической структуры полимеров. Показаны свойства твердых полимеров (температуры стеклования и плавления, параметры кристаллических решеток и др,). [c.2]

    Итак, большая длина цепных макромолекул прчводит к появлению у них гибкости. Гибкость ограничена взаимо йствием атомов и атомных групп, связанных с основной цепью. )то взаимодействие ограничивает свободу вращения вокруг углерод-углеродных связей в макромолекуле. Чем больше взаимодействие, тем выше барьер вращения и тем меньше гибкость макромолекулы. Гибкость макромолекул проявляется в характерной для полимеров зависимости свойств от температуры и обусловливает существование трех физических состояний полимера и особенности его кристаллической структуры. Наличие двух основных элементов структуры — макромолекул и их сегментов — обусловливает особенности надмолекулярной структуры и, в частности, существование флуктуационной сетки. Все это вместе делает для полимера наиболее типичной не чисто упругую или чисто вязкую (необратимую) деформацию, а деформацию вязкоупругую. [c.105]

    Все рассматриваемые здесь своеобразные исследования возникли в связи с тем, что можно назвать загадкой силиконов почему они ведут себя именно так, а не иначе Никакие сведения о химическом строении метилполисилоксана, никакие предварительные данные о связи кремний — углерод не могли объяснить особенных физических характеристик силиконовых полимеров. Химические свойства были понятны, даже ожидались заранее, физические же свойства оставались загадкой. Все особенности указывали на слабое внутримолекулярное взаимодействие и исключительную гибкость цепей. Предполагалось, что причина этого заключается во внутреннем движении необычного рода, но без прочной физической основы. Затем появилась новая техника ядерного магнитного резонанса, которая в условиях высокой разрешающей способности одна давала возможность исследовать внутреннее движение твердых тел наблюдением ширины и отклонения адсорбционной полосы или полос. Хотя эту аппаратуру трудно построить и еще труднее добиться устойчивых экспериментов, тем не менее она ясно показала, что действительно существует значительное количество внутреннего движения и в чистом кристаллическом метилсилоксане и в твердых силиконовых полимерах. Это движение не ограничивается колебанием или отклонением кремний-кислородной связи, но явственно включает вращение метильных групп вокруг связи кремний — углерод, причем оно сохраняется до низких температур [1]. Причины такой свободы вращения (по сравнению со связью углерод — углерод) еще не ясны, но почти определенно связаны с длиной связи. Энергетический барьер для вращения метильной группы в СНзСС1з равен 6 ккал/моль [2], в то время как для СНз81С1з он составляет примерно половину этого, а движение существует до 4° К. В полимере метилсилоксана с молекулярным весом 1 090 ООО барьер для вращения метильной группы составляет всего только 1,5 ккал/моль , т. е. меньше, чем в метаноле [2]. Если мы припишем это различие большему расстоянию связи углерод — кремний, то это должно вызвать дальнейшее усиление движения для аналогичных соединений германия. Поскольку связь германий — кислород будет неиз- [c.60]


    Из практического опыта установлено, что лучший комплекс свойств полимеров, отличающих их от иизкомолекулярных аморфных и кристаллических веществ, достигается при определенном сочетании аморфной и кристаллической частей в полимере. Кристаллическая часть сообщает полимеру прежде всего высокую прочность, которая сочетается с твердостью и жесткостью. Аморфная часть дает возможность проявления упругих и высокоэластических [c.115]

    В зависимости от взятой для поликоиденсации кислоты полиэфирные смолы целесообразно разделить на а) смолы на основе фталевой кислоты б) смолы на основе терефталевой кислоты в) смолы на основе ненасыщенных кислот. Влияние указанных кислот можно проследить на свойствах полиэфиров, полученных поликонденсацией с этиленгликолем. Фталевый ангидрид с этиленгликолем образует хрупкие аморфные смолы, не имеющие большого практического значения. Терефталевая кислота и ее эфиры образуют высокоплавкие кристаллические полимеры, применяемые для получения пленок и волокон. Непредельные кислоты сообщают полимеру особое свойство — способность в ре- [c.216]

    Изделия из полимеров кристаллической структуры сохраняют прочность вблизи температуры плавления, т. е. они не изменяют своих свойств до температуры плавления. [c.59]

    Влияние временного фактора на процессы перемещения молекулярных цепей, сегментов и других элементов структуры сказывается и при формировании в полимерах кристаллических структур. Количество и типы этих структур для разных полимеров различны, и, как правило, в них содержится значительная доля аморфного полимера. Это накладывает отпечаток на физические и механические свойства полимеров, так как аморфная часть легче деформируется и способна к большим упругим деформациям, тогда как кристаллическая часть является жесткой и малодеформируемой. Сочетание таких свойств трудно моделировать с помощью механических моделей. [c.115]

    Об зор кристаллических свойств полимеров и влияния их на механические свойства см. также в статьях В. А. К а р г и н, Г. Л. С л о-н и м с к и й, Успехи химии, 24, 785 (1955) и Г. М. Бартенев, Успехи химии, 24, 815 (1955). [c.11]

    В кристаллических полимерах установлено наличие большого количества структур, обладающих поверхностью раздела и поверхностным натяжением, а изменение их свободной поверхностной энергии, как и в дисперсных системах, играет важную роль в образовании вторичных структур. В явлениях защитного эффекта, в действии наполнителей в полимерах, в водных дисперсиях полимеров поверхностные свойства дисперсных частиц и свойства макромолекул непосредственно связаны между собой. Интересной переходной формой между дисперсными и полимерными систе.мами являются дисперсии полимеров в пластификаторах (гл. IX). Много общего имеется также в диэлектрических свойствах, оптических свойствах (например, в явлениях светорассеяния, в двойном лучепреломлении при течении), гидродинамических свойствах. [c.16]

    Эластомеры занимают промежуточное положение между аморфными и кристаллическими полимерами. Эластические свойства полимеров обусловлены или достаточно слабыми силами, действующими между цепями, или нерегулярностью структуры, что обеспечивает высокую степень аморфности. Тенденция цепей к взаимной ориентации может оказаться сильно пониженной в результате статистического расположения метильных групп, которые вследствие возникающих пространственных препятствий затрудняют упорядочение цепей. Для предотвращения пластического течения в эластомере необходимо присутствие некоторого числа кристаллических (или связанных поперечными химическими связями) областей и, кроме того, свобода движения цепей должна быть достаточно велика (это означает, что должна быть низкой). Структура полимера такого типа схематически изображена на рис. 29-6 основное отличие этого эластомера от кристаллического полимера, изображенного на рис. 29-4, заключается в величине аморфных областей. При действии напряжения и удлинения материала цепи в аморфных областях выпрямляются и располагаются почти параллельно., В области эластических деформаций достигается полукристаллическое состояние, отличающееся от состояния, которое [c.496]

    Рентгенографические исследования показывают, что кристалличность не является свойством, присущим только определенным классам полимеров. Кристаллические образования могут в большей или меньшей степени возникать у различных полимеров, поэтому деление полимерных веществ на аморфные и кристаллические едва ли правильно. [c.69]

    Деформационные свойства кристаллических полимеров. Кристаллические полимеры, как было сказано в гл 1, состоят из кристаллических и аморфных участков Кристаллические участки деформируются как упругие твердые тела за счет смещения атомов в решетке, деформации связей и углов. Аморфные прослойки в зависимости от условий (температуры и скорости) могут деформироваться как стеклообразные при Г Гс), высо-коэластические (Гт>7 >7 с) или вязкотекучис (7 >Гт)- Кристаллические полимеры отличаются от аморфных повышенными значениями модуля упругости, пО Шженной податливостью, меньшей восстанавливаемостью. Но сочетание жестких кристаллических и податливых (аморфных) участков делает кристаллические полимеры менее хрупкими, чем стеклообразные. Деформационная кривая кристаллического полимера по внешнему виду напоминает кривую стеклообразного полимера (рнс. 5.28). На ней также можно выделить три участка. На первой стадии расгяжс.чия (линейный участок) развиваются упругие обратимые деформации, увеличивающие свободный объем в полимере. Модуль упругости (наклон прямой) тем больше, чем выше степень кристалличности. На этой стадии разрушается исходная кристаллическая структура На // стадии проис.ходит перестройка исходной кристаллической структуры и образование новой в условиях напряженного состояния Этот процесс называется рекристаллизацией. Образец в каком-то месте (на [c.314]

    От обычных, низкомолекулярных соединений твердые полимеры отличаются физическим состоянием или морфологией. Большинство полимеров проявляют свойства твердых кристаллических веществ и высоковязких жидкостей [10, 11]. На рентгено-и электронограммах полимеров обнаруживаются четкие рефлексы, характерные для пространственно упорядоченных, кристаллических веществ, а также диффузные картины, типичные для жидкостей. Для обозначения упорядоченных и неупорядоченных областей в полимере применяются соответственно термины кристаллический и аморфный. Степень кристалличности разных полимеров весьма различна. Хотя отдельные полнмеры могут быть полностью аморфными или целиком кристаллическими, большинство из них характеризуется частичной кристалличностью, т. е. они являются полукристаллическими. [c.31]

    Для полимеров существует два основных типа температур перехода температура плавления Гдл и температура стеклования, Гст- Температура плавления — это температура плавления кристаллической фазы полимера. Температурой стеклования называется температура, при которой аморфные области полимера приобретают свойства, характерные для стеклообразного состояния хрупкость, жесткость и прочность. Различия между двумя указанными тепловыми переходами можно легко понять, рассматривая изменения, происходящие в размягченном, жидком полимере нри его охлаждении. С уменьшением температуры уменьшаются поступательная, вращательная и колебательная энергии в молекуле полимера. Когда суммарная энергия молекулы уменьшается до величины, при которой поступательная и вращательная энергии уже практически отсутствуют, становится возможной кристаллизация полимера. При этом, если удовлетворяются определенные требования симметрии, то молекулы могут принимать упорядоченное расположение и таким образом реализуется кристаллизация. Температура, при которой происходит этот процесс, и есть Гдл- Однако не у всех по.лимеров создаются необходимые условия для кристаллизации. Если требования симметрии не удовлетворяются, то кристаллизация не протекает, но по мере дальнейшего снижения температуры энергия молекул продолжает уменьшаться. При достижении сегментальное движение полимерных цепей прекращается из-за сильного ослабления вращения связей. [c.35]

    В целом общий характер переходов подтверждает существовз ние двух фаз в полимере кристаллической фазы ПЭО и аморфно фазы ПС, находящейся в стеклообразном состоянии. Кроме того наблюдается полное разделение на фазы, так как аморфная фаз. ПС сохраняет стеклообразные свойства и после плавления кристаллической фазы ПЭО (Г > Тт). Следует отметить, что случай Tg > Тт никогда не реализуется для гомополимеров. Наиболе важным результатом является, безусловно, установление фактг существования двух фаз, которые обладают независимыми темпе ратурами переходов. [c.160]

    При рассмотрении физической структуры (т. е. надмолекулярной структуры) и фазовых состояний полимеров обнаруживается ряд особенностей, связанных с большим размером макромолекул. Из-за сложности структуры полимеров часто противоречивы ее толкования. Надмолекулярная структура оказывает большое влияние на свойства полимеров. Кристаллические полимеры имеют более высокую прочность, чем аморфные полимеры, более благоприятные свойства для получения пленок и волокон и т. д. [c.31]

    Поскольку пластифицированный ПВХ проявляет высокоэластическую деформацию, он является очень важным техническим материалом. Наличие кристаллических узлов и преобладающий энтропийный характер деформации обеспечивают сохранение начальной формы и не очень значительную ползучесть (крип) изделий из пластифицированного ПВХ. Не останавливаясь на других особенностях пластифицированного ПВХ, отметим, что, по некоторым данным [16], при больших концентрациях полимера эластические свойства пластифицированного ПВХ носят экстремальный характер. Вероятно, это объясняется тем, что происходит некоторая перестройка структуры, поскольку полимеризация ПВХ приводит к получению неравновесных структур из-за нерастворимости полимера в мономере. [c.233]

    Полиуретаны — полимеры кристаллической структуры с волокнообразующимися свойствами. В зависимости от природы исходных компонентов полиуретаны могут обладать различными свойствами термопластичностью и термореактивностью, эластичностью и хрупкостью, мягкостью и твердостью. [c.85]

    Как известно, длинные цепные молекулы обладают гибкостью, а поэтому под влиянием теплового движения скручиваются. Именно этим обусловлено возникновение у полимеров высокоэластических свойств и аномалий их физических свойств. Способность ценных молекул изменять свою форму особенно резко проявляется в ориентационных явлениях при деформации аморфных и кристаллических полимеров, а также при течении растворов полимеров. Развившиеся за последние годы исследования формы цепных молекул в различных растворителях, возможность получения ряда линейных полимеров в глобулярной форме и другие экснеримептальные данные окончательно подтвердили гипотезу о легкой скручиваемости цепной молекулы. Это послужило основанием для развития современных представлений о характере расположения ценных молекул в аморфном полимере и о своеобразии упорядочения при кристаллизации полимера. Отсюда возникло представление о полимере как о системе хаотически спутанных, скрученных ценных молекул. Однако учет современных данных о строении вещества приводит к выводу, что упаковка хаотически скрученных цепных молекул, обладающих гибкостью вследствие вращения относительно С—С-связей, не может быть достаточно плотной, чтобы обеспечить наблюдаемые экспериментально значения плотностей полимеров. [c.108]

    Поскольку высокоэластическое состояние обусловлено изменением конформаций макромолекулы, а образование кристаллов означает их правильную и плотную упаковку и, следовательно, значительно затрудняет переход из одной конформации в другую, то кристаллизация приводит к потере полимерами высокоэластических свойств, т. е. кристаллический полимер всегда будет более леестким, чем аморфный. [c.258]

    Известно, что морфологическая структура природных волокон оказывает большое влияние на их свойства. К сожалению, ана логичные сведения о синтетических полимерах крайне ограни чены. Без сомнения, материал, содержащий крупные сферолиты при одинаковом соотношении кристаллической и аморфной частей оказываегся более хрупким, чем мелкокристаллический [4Ш с. 305]. Наличие сферолитов обусловливает специфический ха рактер разрушения, происходящего вдоль радиальных волокон сферолита [499—501 ]. Ряд факторов указывает на наличие мель чайших капилляров между радиальными волокнами сфероли тов в полимерах. Важнейшее свойство полиамидов — их высокая износостойкость, по-видимому, также связана с особенностями структуры их. сферолитов [502, с. 1197]. [c.189]

    Влияние размера частиц стеклообразного или кристаллического полимера на свойства каучуков не выяснено. Здесь, видимо, должна быть та же закономерность, как и во влиянии размера частиц неполи-мерпых наполнителей на механические свойства. Олтером, например, было установлено, что при уменьшении размера частиц минеральных наполнителей в полимерах до 0,2 мкм прочность растет и относительное удлинение нри разрыве падает линейно с ростом обратной величины диаметра частиц наполнителя [188]. [c.27]

    На основании представлений, развитых в предыдущем разделе, можно установить связь между свойствами многих важных в промышленном отношении тер мо пластиков и эластомеров и их химическим строением. Теперь должно быть понятно, почему простые линейные полимеры типа полиэтилена, полиформальдегида и политетрафторэтилена представляют собой кристаллические вещества, обладающие довольно высокими температурами плавления. Полученные обычным способом поливинилхлорид, поливинилфторид и полистирол обладают гораздо меньшей степенью кристалличности и имеют более низкие температуры плавления у этих полимеров физические свойства сильно зависят от стереохимической конфигурации. Полистирол, полученный методом свободнорадикальной полимеризации в растворе, является атактическим. Этот термин означает, что если ориентировать углеродные атомы полимерной цепи, придав ей правильную зигзагообразную форму, то фенильные боковые группы окажутся распределенными случайным образом по одну и по другую сторону вдоль цепи (как это показано на рис, 29-7). При полимеризации стирола в присутствии катализатора Циглера (разд. 29-5,А) образуется изотактический полистирол, отличающийся от атактического полимера тем, что в его цепях все фенильные группы распо- [c.498]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    НО изменяется важнейшая термодинамическая характеристика (объем), плавление можно рассматривать как переход первого рода. При температурах выше 7 пл полимер представляет собой жидкость, и наклон линии АВ на рис. 31.1 есть не что иное, как коэффициент термического расширения расплава. Если же расплавленный аморфный полимер охладить до температуры ниже температуры его плавления, то он ведет себя как каучук ( ) до тех пор, пока не будет достигнута температура стеклования Гст. Ниже этой температуры полимер проявляет свойства стекла (участок EF). Если полимер кристаллизуется, то изменение удельного объема следует по линии B D. В этом случае кристаллизация протекает нерезко и в области между точками В VI С твердая и жидкая фаза сосуществуют. Температура плавления определяется при этом как точка, в которой наблюдается излом кривой. Для истинно кристаллического образца процесс следует по пути ABG D. Кристаллизация реальных полимеров обычно не проходит до полного завершения, и наблюдается переходная область BE F как некоторый температурный интервал, сходный с подобным интервалом для аморфного полимера (BEF). Совершенно очевидно, что это явление следует интерпретировать как свидетельство того, что процесс стеклования протекает в аморфных областях полукристаллического полимера [1]. Стеклование представляет собой переход второго рода, являющийся следствием релаксации сегментов цепи в аморфных областях полимера. Температура стеклования есть именно та температура, при которой некристаллический полимер изменяет свойства, превращаясь из стеклообразного твердого тела в каучукоподобную жидкость. В терминах структуры Гст обычно рассматривается как температура, при которой начинается движение большинства сегментов основной цепи. Температура этого перехода имеет важное прак- [c.479]

    Для характеристики полимеров исиользуют понятие степепи к р и с т а л л и ч и о с т и, или коэфф. кристалличности. Стеиепь кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значепие этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности мепьше 20% (поливипилхлорид, нек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, иапр. степень кристалличности полиэтилена пизкой плотпости меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тела, кристаллические полимеры при определенных темп-рпых условиях обладают способностью к сравнительно большим обратимым деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. иолимеров, в отлпчие от иизкомолекулярных веществ, происходит в большом темп-рном интервале. [c.593]

    Как уже отмечалось в случае молекул низкомолекулярных веществ (стр. 87), образование поперечных связей изменяет такие свойства, как растворимость и плавкость. Эти свойства мало изменяются до тех пор, пока сщиваются лишь немногие полимерные молекулы. Но на той стадии, когда во всей системе образуется впервые трехмерная сетка, происходит заметный скачок свойств. В этой точке — точке гелеобразования — материал становится нерастворимым в растворителях, растворяющих исходный полимер. Кристаллические полимеры, которые обычно плавятся при нагревании с образованием вязкой жидкости, после облучения при нагревании выше обычной точки плавления превращаются в каучукоподобный материал ( рис. 25). Если принять, что единственным процессом, протекающим в системе, является беспорядочное сшивание молекул, то точке гелеобразования соответствует образование одной сшитой мономерной единицы [С52] на одну средневесовую молекулу полимера, имевшуюся вначале. Поскольку для образования одной поперечной связи нужно сшить две мономерные единицы, то доза в радах, необходимая для достижения точки гелеообразо-вапия (г), дается выражением [c.179]

    Политрифторхлорэтилен — ПТФХЭ (фторопласт-3, фтор-лон-3)—кристаллический полимер, по свойствам близкий к полиэтилену, но превосходящей его по предельной температуре эксплуатации. Основные физико-механические характеристики ПТФХЭ следующие  [c.230]

    ТЕПЛОСТОЙКОСТЬ ПОЛИМЕРОВ — способность полимеров сохранять при повышенных темп-рах твердость, необходимую для эксплуатации изготовленных из них изделий. У стеклообразных полимеров теплостойкость определяется темп-рой стекловання (см. Стеклование полимеров, Механические свойства поли.меров) и зависит от величины и скорости приложения механич. воздействий. Увеличенпе длительности воздействия и величины напряжения вызывает снижение теплостойкости. При переменных напряжениях теплостойкость повышается с увеличением частоты воздействий. У кристаллич. полимеров теплостойкость определяется темн-рой, нри к-рой еще сохраняется его кристаллич. состояние (см. Структуры над.чолекулярные полимеров. Кристаллическое состояние полимеров), и зависит от глубины и условий кристаллизации. Теплостойкость любых твердых полимеров снижается нри пластификации и несколько увеличивается при введении наполнителей. [c.38]

    Т. и. п. получило широкое распространение, в первую очередь для определения теми-рных областей переходов из одного физич. состояния в другое (см. Механические свойства полимеров, Деформация полимеров, Кристаллическое состояние полимеров), а также для оценки химпч. и физич. структурных измено- [c.52]

    Как уже отмечалось выше, в сборник включены статьи о последних достижениях в технологии производства и в оборудовании для переработки пластмасс, а также материал, посвященный свойствам и переработке нового перспективного полимера — кристаллического полиэти-лентерефталата, предназначенного для изделий конструкционного назначения. [c.6]


Смотреть страницы где упоминается термин Полимеры кристаллические, свойства: [c.98]    [c.49]    [c.45]    [c.77]    [c.372]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.308 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Акустические свойства кристаллических полимеОсновные виды молекулярного движения и температурных переходов в кристаллических полимерах

Акустические свойства кристаллических полимеров

Влияние кристаллической структуры полимера на свойства поj, крытий

Влияние кристаллической структуры полимера на свойства покрытий

Влияние небольших добавок поверхностно-активных веществ на свойства кристаллических полимеров (совместно с Л. П. Василевской, Н. Ф. Бакеевым, Лагун и П. В. Козловым)

Деформационно-прочностные свойства ориентированных кристаллических полимеров

Деформационные свойства кристаллических полимеров

Зависимость акустических свойств кристаллических полимеров от степени кристалличности

Изучение механических свойств кристаллических и аморфных полимеров методом динамометрии

Кристаллические полимеры и особенности их механических свойств

Кристаллические полимеры физические свойства

Механические свойства кристаллических и кристаллизующихся полимеров

Механические свойства наполненных кристаллических полимеров

Механические свойства полимеров в стеклообразном и кристаллическом состояниях

Механические свойства полимеров кристаллических

Молекулярная подвижность и акустические свойства некоторых кристаллических полимеров

Об учете вида напряженного состояния при описании нелинейных вязкоупругих свойств частично кристаллических полимеров ГОЛЬДМАН, С.А. ЦЫГАНКОВ

Оценка влияния температуры на деформационные свойства аморфных и кристаллических полимеров

Полимеры в кристаллическом состоянии и их деформационные свойства

Регулирование структуры и свойств кристаллических полимеров

СВОЙСТВА КРИСТАЛЛИЧЕСКИХ ПОЛИМЕРОВ И СТЕРЕОХИМИЯ ПОЛИМЕРНЫХ ЦЕПЕЙ Кристаллические полимеры

Свойства и морфология наполненных кристаллических полимеров

Сорбционные свойства кристаллических полимеров (совместно с Т. В. Гатовской)



© 2024 chem21.info Реклама на сайте