Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силовые постоянные связей в двухатомных и многоатомных молекулах

    Силовые постоянные связей в двухатомных и многоатомных молекулах 187 [c.6]

    Поставим теперь вопрос как должны выглядеть эти истинные колебательные движения Полный ответ на этот вопрос включает сведения о том, насколько и в каком направлении сдвинут каждый атом в любой момент времени. Для этого требуется решение довольно сложных уравнений. Для химических целей обычно достаточно менее точного описания. Во-первых, мы можем отметить, что истинное колебательное движение должно быть таким, чтобы центр тяжести молекулы или ее угловые моменты не изменялись, поскольку мы уже выделили поступательное и вращательное движения. В случае двухатомной молекулы возвращающая сила, пропорциональная силовой постоянной, стремится вернуть молекулу из искаженной конфигурации в ее равновесную конфигурацию [см. уравнение (3)]. В случае многоатомной молекулы имеется много возвращающих сил, соответствующих всем различным межъядерным расстояниям в молекуле. К счастью, не все из этих сил одинаково существенны. Чтобы получить полуколичественное или хотя бы качественное представление о том, какова форма колебаний, мы можем пренебречь теми межатомными силами, которые сравнительно слабы, и рассматривать только более существенные. Далее, было найдено, что можно получить хорошее приближение к форме колебаний, позволяющее сделать ряд выводов, интересных для химии, если предположить, что наиболее существенные силы ассоциированы с некоторыми характеристиками химических связей. [c.284]


    Для расчета величины Аг необходимо знать ангармоническую часть функции потенциальной энергии. Наиболее точное описание потенциальной энергии вблизи минимума дается степенным рядом kx -Fax -j-t>x (трехпараметрическая функция), где k — силовая постоянная в гармоническом приближении коэффициенты а и Ь характеризуют ангармоничность колебания. Параметры а и Ь для двухатомных молекул можно определить из анализа колебательно-вращательного спектра переходов О 1 и О -> 2. Для многоатомных р.юлекул раздельное определение а и Ь затруднено, и для описания потенциальной энергии связи применяется двухпараметрическая функция Морзе. Параметры этой функции могут быть найдены из значений частот переходов 0-> 1 и О 2, а величина Аг определится по формуле [c.53]

    Было также показано, что для наиболее важного случая — реакции разрыва связи меледу двумя атомами в большой молекуле — фактор частоты V имеет то же значение, что и частота колебания воображаемой двухатомной молекулы, состоящей из атомов, соединенных связью с той же самой силовой постоянной, как и связь, соединяющая атомы в многоатомной молекуле. [c.170]

    Для наиболее важного случая — реакции разрыва связи между двумя атомами в большой молекуле — фактор частоты V совпадает по значению с частотой колебания воображаемой двухатомной молекулы, состоящей из атомов, связь между которыми имеет ту же силовую постоянную, что и связь между атомами в многоатомной молекуле. [c.178]

    Если бы квантово-механическая теория химических связей была вполне совершенной, она должна была бы объяснить все отличия, которые имеются между различными связями. Ниже мы рассмотрим некоторые из попыток, которые делались в этом направлении укажем также на некоторые трудности, с которыми теория должна столкнуться в этих вопросах. Но и до этого следует указать, что во многих случаях некоторые из этих свойств с трудом поддаются определению. Так, например, во всех молекулах, кроме двухатомных, на энергию диссоциации связи сильно влияют атомы, находящиеся рядом с этой связьнэ. Таким образом, говоря об энергии связи С—С в этане, необходимо точно охарактеризовать состояние метильных групп после разрыва связи. Термохимическое измерение теплоты диссоциации этана на два метильных радикала дает значение энергии, необходимой для образования метильных радикалов, в их наиболее устойчивом состоянии, которое, по-видимому, является плоским. Но с теоретической точки зрения более целесообразно рассматривать энергию, требуемую для разрыва связи С —С без изменения длин связей С — Н и валентных углов в двух образую-. щихся метильных группах. Эти две энергии, вероятно, сильно отличаются одна от другой. Аналогично силовая постоянная связи в многоатомной молекуле определяется при анализе нормальных колебаний молекулы, но оказывается (за исключением, конечно, случая двухатомных молекул), что имеются взаимодействия между деформациями отдельных связей, которыми шкак нельзя пренебречь, что усложняет оценку силовой постоянной данной связи. На дипольный момент связи в многоатомной молекуле влияют поляризационные эффекты и другие взаимодействия с остальными связями, [юэтому выделить собственный), дипольный момент данной связи также уюжет быть затруднительно. Таким образом, уже перед тем, как приступить к созданию теории изменения химических связей между различными атомами, мы наталкиваемся на трудности в однозначной формулировке ( пактов, подлежащих объяснению. [c.366]


    Исследование колебательных спектров изотопных разновидностей молекул может существенно облегчить отнесение полос, т. е. интерпретацию спектров, помогает в решении обратной колебательной задачи, т. е. нахождении силового поля молекулы. В адиабатическом приближении предполагается, что при изотопозамещении распределение электронной плотности, равновесные межъядерные расстояния, функция потенциальной энергии и силовые постоянные (матрица Р), через которые она выражается, остаются неизменными. Различия в массах ядер приводят лишь к изменению кинетической энергии, т. е. коэффициентов кинематического взаимодействия (матрица С), чем и обусловливаются различия колебательных частот изотопных разновидностей молекул. Эти различия, вообще говоря, должны быть те.м значительнее, чем больше отношение масс изотопов т /т (индексом обозначены величины, относящиеся к более тяжелому изотопу). Поэтому наибольший изотопный эффект дает, например, замещение атома водорода (протия) на тритий и дейтерий. Для двухатомных молекул X—Н (или, приближенно, для такой связи в многоатомной молекуле), исходя из выражения для гармонической частоты [c.227]

    Колебательные спектры многоатомных молекул весьма сложны, и отнесение полос в этих спектрах к колебаниям отдельных связей (групп) при проведении структурно-группового анализа — непростая задача. В этом случае полезно исследовать колебательные спектры изотопозамещенных молекул. При изотопном замещении потенциальная энергия молекул, а следовательно и силовые постоянные не меняются, различие в частотах изотопозамещенных молекул обусловлено лшпь эффектом масс. У двухатомной молекулы относительное смещение частот будет определяться в соответствии с уравнением (11.61) соотношением [c.294]

    Выше уже указывалось (разд. IV, А, 1), что в случае двухатомных молекул значения ионного характера, рассчитанные по величине константы квадрупольного взаимодействия в приближении Таунса — Дэйли, хорошо согласуются с общепринятыми представлениями о степени ионности связей, основанными на таких физических данных, как дипольные моменты, длины связей, силовые постоянные и т. п. В случае многоатомных молекул понятию степени ионности значительно труднее дать четкое и однозначное определение. Значения ионного характера I (а также /), вычисляемые по данным ЯКР, ограничены тем, что они связаны со специальным приближением в рамках метода МО сам же метод МО позволяет получить лишь приближенную волновую функцию для молекулы. Величины, вычисляемые с помощью таких приближенных волновых функций, часто плохо согласуются с экспериментальными данными 52]. Кроме того, интерпретации спектров ЯКР в значительной мере препятствует неопределенность в значениях поляризационного фактора Штернгеймера (см. разд. II, В). Поэтому представляется даже удивительным, что в том случае, когда атомы металла относятся к одному и тому же ряду переходных элементов, между значениями ионного характера (приведенными в табл. 2) и разностями электроотрицательностей центрального атома и атома галогена существует линейное соотношение [49]. Это обстоятельство, возможно, указывает на то, что эмпирическое понятие степень ионности , выраженное в виде характеристик электроотрицательности элементов, все же сохраняет некоторое значение и в случае многоатомных молекул несмотря на затруднения, связанные с его теоретической интерпретацией. [c.227]

    Связь кислород — кислород в молекуле Оа является двойной ее энергия 118 ккал/моль. Однако в перекиси водорода Н2О2 два атома кислорода связаны друг с другом, но они делят между собой только одну электронную пару. Такая связь должна быть ординарной, и эксперимент подтверждает это предположение. Чтобы разорвать такую связь (с образованием двух молекул ОН), необходимо затратить 51 ккал, т. е. почти вдвое меньше энергии, необходимой для разрыва связи в О2. С этим согласуются и другие критерии — со- угношения между порядком связи, длиной связи и силовой постоянной колебания связи (см. разд. 4.3, г). В табл. 7.1 показано изменение свойств связи в зависимости от порядка связи для четырех элементов углерода, азота, кислорода и фтора. Как мы уже видели в гл. 3, для двухатомных молекул три критерия порядка связи — энергия связи, длина связи и силовая постоянная — согласуются друг с другом и позволяют судить о прочности связи и в многоатомных молекулах. Любая из этих величин дает ценную информацию [c.196]

    Следует отметить, что при настоящем состоянии наших знаний молекулярные спектры в видимой и ультрафиолетовой области, связанные с наличием электронных переходов, исследованы сравнительно мало. Имеющийся материал относится главным образом к двухатомным молекулам, для которых эта область спектроскопии представляет вполне определенную ценность. Что же касается многоатомных молекул, в частности органических, то главные сведения об их структуре мы получаем из колебательных спектров, спектров комбинационного рассеяния и инфракрасного поглощения. Здесь молекулярная спектроскопия дает в наши руки многочисленные возможности делать заключения об особенностях молекулярной структуры. Число собственных колебаний молекулы, т. е. число ее внутренних (колебательных) степеней свободы, связано с числом N атомов в молекуле и определяется выражением ЗУУ — 6 (для линейных молекул Ш—5). Но вследствие симметрии молекулы частоты некоторых колебаний могут совпадать между собой, так что число определяемых на опыте различных собственных колебаний данной молекулы определяет характер ее симметрии. В этих изысканиях типа симметрии молекулы важную роль, наряду с числом различных колебаний, играют данные об пнтенсивности и особенно о поляризации линий комбинационного рассеяния. Частоты собственных колебаний служат для определения силовых постоянных, характеризующих молекулу установление тех или иных характеристических частот может иногда служить для решения вопроса о существовании в составе молекулы определенных молекулярных группировок. Немаловажные данные о некоторых структурных особенностях молекулы могут дать наблюдения аномально больших интенсивностей некоторых линий молекулярного спектра. Наконец данные о форме и ширине линий могут оказаться параметрами, связанными с определенными структурными элементами молекулы и поэтому пригодными для использования в качестве характеристических параметров, в совокупности с интенсивностью, поляризацией и частотой [c.3]



Смотреть страницы где упоминается термин Силовые постоянные связей в двухатомных и многоатомных молекулах: [c.95]    [c.329]    [c.68]    [c.291]    [c.76]   
Смотреть главы в:

Краткий справочник физико-химических величин Изд.8 -> Силовые постоянные связей в двухатомных и многоатомных молекулах




ПОИСК





Смотрите так же термины и статьи:

Двухатомные молекулы

Молекулы двухатомные многоатомные

Молекулы многоатомные

Молекулы связь

Связь в двухатомных молекула

Силовая постоянная связей

Силовые связи



© 2024 chem21.info Реклама на сайте