Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление некаталитическое

    Экспериментальные работы показывают, что в интервале температур 550—700° при некаталитическом окислении метана под атмосферным давлением получается формальдегид [106]. Однако степень превращения метана при этом незначительна (5—8%), а выход формальдегида на прореагировавший метан составляет всего около 18%. Увеличение давления до 100 ат снижает температуру неполного окисления метана до 350—400°. В результате окисления метана кислородом при 360° и 100 ат и отношении метан кислород 9 1 образуются продукты, содержание 70% метанола и 0,6% формальдегида. Остальной кислород переходит в воду, СО и СОа [107]. В связи с малой степенью превращения и небольшими выходами целевых продуктов процессы некаталитического неполного окисления метана в промышленности не применяются. [c.83]


    СЛОЙ пускают реакционную смесь. Для выравнивания температуры применяется иногда слой инертной (т. е. некаталитической) насадки. Так, этилен получают частичным окислением этана при 816 С в реакторе с насадкой из керамики при объемной скорости 800 причем скорость этого процесса сравнима со скоростью каталитических реакций. [c.371]

    Существует пять основных направлений прямого синтеза окиси пропилена каталитическое парофазное окисление, некаталитическое парофазное окисление, каталитическое жидкофазное окисление, некаталитическое жидкофазное окисление и эпоксидирование пропилена надкислотами или гидроперекисями. [c.163]

    Этиленгликоль получается преимущественно прямым каталитическим окислением этилена в этиленоксид с последующей ее гидратацией. Этиленоксид может быть превращен в гликоль каталитической или екаталитической гидратацией. В каталитическом процессе требуется большой избыток разбавленных водных кислот, обычно серной, а в некаталитическом — избыток воды. Реакция каталитического процесса проводится при 180°С и 21,5-105 11а, а некаталитичеокого процесса — при 95 °С и (15—20)-10 Па. Побочными продуктами реакции являются ди- и триэтиленгликоли, составляющие соответственно 9% и 1% (масс.). При этом выходы этих гликолей могут быть повышены увеличением температуры и небольшим понижением давления в реакторе. Небольшие количества полиэтиленглико-лей образуются также при обычных условиях, но выход их может быть увеличен при использовании в качестве катализатора аОН. Для разделения и очистки гликолей проводят дегидратацию реакционной смеси с последующей вакуумной перегонкой. [c.272]

    Все сказанное выше о влиянии условий ведения процесса на выход отдельных продуктов реакции справедливо для некаталитического окисления парафиновых углеводородов в газовой фазе. Но в то же время существует процесс каталитического окисления бутана в жидкой фазе в присутствии растворителя, например уксусной кислоты, и катализаторов, как ацетат никеля, кобальта и марганца. [c.151]

    Окисление более тяжелых углеводородов, начиная с гексана, приводит к образованию весьма сложной смеси продуктов, из которой очень трудно выделить индивидуальные соединения. Поэтому углеводороды тяжелее Се подвергают окислению только в том случае, когда продукт реакции находит применение непосредственно в виде смеси. В самом деле, даже некаталитическое окисление пропана и бутана в паровой фазе при 270—350 " С и давлении от 3,5 до 200 атм приводит к получению очень широкой гаммы продуктов, что наглядно иллюстрируется табл. ХП1 . Помимо продуктов, перечисленных в этой таблице, реакционная смесь содержит кислоты Сх—С4, спирты Сг—С,, кетоны С3—С,, окись этилена, простые эфиры, ацетали, альдоли и т. д. [306, 307]. Соотношение между отдельными соединениями и классами соединений в реакционной смеси может колебаться в широких пределах и зависит от условий реакции. Наибольший выход продуктов окисления соответствует температуре реакции 150—250° С. При более высоких температурах интенсивнее протекают не только реакции окисления, но и реакции крекинга и пиролиза. Так, образование бутиленов достигает максимума нри 375° С, а образование этилена и пропилена — при 700° С (давление во всех случаях атмосферное). С ростом температуры одновременно происходит падение выходов продуктов окисления [307]. [c.585]


    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]

    Состав жидких продуктов некаталитического окисления парафиновых углеводородов С3—С4 [308, 3091 [c.585]

    Изучению реакции окисления меркаптанов в водно-щелочной среде посвящен ряд отдельных статей, обзоров и монографий [61-64,82]. Некаталитическое окисление меркаптанов молекулярным кислородом идёт очень медленно. В присутствии оснований и катализаторов реакция может идти весьма быстро уже при комнатной температуре. [c.22]

    Показано, что ДЭГ несколько ускоряет окисление меркаптида и в отсутствие катализатора. Однако вклад некаталитической реакции является очень низким (K aб = 1.61 10 V при концентрации ДЭГ 0,105 моль/л), поэтому наблюдаемые экстремальные зависимости константы скорости каталитической реакции от концентрации ДЭГ не могут быть объяснены только ускорением реакции каталитического окисления. Следовательно, причина наблюдаемой сложной зависимости константы скорости от концентрации ДЭГ заключается во взаимодействии катализатора и растворителя. [c.56]

    На практике некаталитическое окисление в жидкой фазе применяют только при синтезе гидропероксидов и надкислот (поскольку последние способны к разложению под действием катализаторов). В этом случае кинетика процесса определяется такими элементарными стадиями  [c.363]

    III. ОКИСЛЕНИЕ ЭТИЛЕНА А. НЕКАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ЭТИЛЕНА [c.226]

    А. НЕКАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ЭТИЛЕНА [c.227]

    Еще не так давно разработка некаталитического способа получения окиси этилена была экономически оправданной благодаря возможности использования этана или этан-этиленовых смесей вместо более дорогостоящего чистого этилена [19]. Однако, несмотря на образование 30 /о дополнительных полезных продуктов, в том числе акролеина и ацетальдегида, получение окиси этилена окислением этан-этиленовых смесей оказалось менее эффективным, чем получение окиси пропилена из смесей пропана и пр опилена с 20%-ным выходом побочных продуктов. [c.227]

    Оксиды несходных металлов подгруппы железа и хрома. В состав катализаторов дегидрирования, гидрообессеривания, риформинга и ряда других входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в окислительно-восстано-вительных реакциях [93]. Поэтому естественно, что уже в ранних работах, посвященных изучению закономерностей окислительной регенерации катализаторов, содержащих переходные металлы, наблюдали более высокие скорости окисления кокса по сравнению с Таковыми для некаталитического окисления углерода [3, 75]. Однако только в цикле работ сотрудников Института катализа СО АН СССР детально изучены закономерности каталитического окисления кокса на оксидах чистых переходных металлов, а также промотированных щелочными металлами [104-108]. [c.40]

    Гомогенное некаталитическое окисление сернистого ангидрида в серный по реакции [c.139]

    В промышленности применяется некаталитический процесс неполного окисления углеводородного сырья кислородом под давлением до 40 ат температура, обеспечивающая высокую степень превращения углеводородов, лежит в пределах 1200—1500 °С [55—57]. В этих условиях могут протекать и реакция крекинга (15) исходных углеводородов, и реакция разложения образовавшейся окиси углерода  [c.32]

    Условия окисления, равно как и химизм процесса, существенно зависят от природы сырья и целевых продуктов. Так, получение карбоновых кислот и их ангидридов возможно только при каталитическом окислении, тогда как гидропероксиды алкилароматических углеводородов получают преимущественно при некаталитическом жидкофазном окислении. [c.37]

    Этот процесс следует отличать от типично некаталитического металлопарового процесса получения водорода, в рамках которого осуществляется полное окисление углеводородного сырья окислом металла до двуокиси углерода и воды. В рассматриваемом процессе только часть углеводородного сырья участвует в этой реакции. Другая его часть конвертируется с образовавшимися (по указанной реакции) двуокисью углерода и водяным паром. Катализатором конверсии, видимо, являются поверхностно восстановленные до металла частицы окисла металла (см. табл. 18). [c.38]


    Имеется несколько современных вариантов процесса, например частичное сжигание, расщепление в потоке и прямое окисление. В процессе частичного сжигания (применяемого для газов, содержащих 50-100% НгЗ ) -сероводород сжигается некаталитическим путем воздухом, подача которого ограничивается так, чтобы шла реакция  [c.278]

    Например, в гл. 4 приведены новые данные по некаталитическому окислению низших парафинов и по процессу окисления парафиновых углеводородов в присутствии бромистого водорода (однако в книге отсутствуют сведения о каталитическом процессе окисления бутана в жидкой фазе). Весьма увеличен раздел, описывающий производство этилена из этана и пропана, что отражает роль, которую играют эти два углеводорода в производстве олефинов и их переработке полимеризацией, с приведением нового фактического материала по производству полиэтилена и полипропилена (гл. 7). Значительно расширен и раздел, относящийся к производству окиси этилена, где даны сведения по эксплуатации промышленных установок. Здесь же приведен новый материал по получению акролеина окислением пропилена (гл. 9). В связи с использованием нафтенов и ароматических углеводородов для производства синтетических волокон, синтетических смол, фенола и ацетона в гл. 13 и 14 значительно расширены разделы, посвященные получению и выделению из нефтяных фракций нафтенов (циклогексана) и ароматических углеводородов (п-ксилола). [c.5]

    Перекиси. Перекись водорода может быть важным продуктом окисления углеводородов Са и вышо в области низких давлении. Нет достаточных доказательств относительно возможности получения значительных выходов алкильных гидроперекисей или перекисей при окислении углеводородов от С до С без применения специальных газообразных катализаторов. В литературе [28] приводятся иекоторые сведения от1го-сительно образования этих перекисей в результате некаталитического окисления высших предельных углеводородов при температуре ниже 300° С. [c.342]

    Ниже приводятся примеры образования всех этих продуктов при некаталитическом парофазном окислении олефинов молекулярным кислородом. Если бы удалось подбором соответствующих высокоселективных катализаторов создать условия для преимущественного протекания того или другого из перечисленных четырех процессов, это дало бы возможность получать технически ценные полупродукты. [c.157]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Окисление до любого из возможных промежуточных соединений является сильно экзотермической реакцией, поэтому не вполне ясно, почему окисление должно остановиться на какой-либо определенной стадии или почему полное окисление до двуокиси углерода и воды не протекает в качестве единственной реакции, как при несколько более высоких температурах. Баргойн и другие [1] изучали медленное некаталитическое окисление о-ксилола воздухом при несколько менее высоких температурах и при давлении 4,6 апг. Из их данных видно (табл. 2), что избирательность реакции чрезвычайно мала. Не опубликовано ни одного исследования по механизму или кинетике реакции окисления о-ксилола в условиях, применяемых для производства фталевого ангидрида. Такое исследование представляло бы очень большие трудности вследствие гетерогенности реакции, чрезвычайно малого времени реакции и высокой температуры. Однако, изучая основные и побочные продукты этой и подобных ей реакций, можно получить некоторое представление о ходе реакции. [c.11]

    Саморсгенерация является сложным процессом, который состоит из каталитического окисления парами воды промежуточных продуктов на пути коксообразования до СО и СО2 и из каталитического и некаталитического окисления паром уже образовавшегося кокса. Поэтому образующийся [c.65]

    На рис. XII, 1 показа ны пути рассмотренной) реакции по некаталити ческому и каталитическому механизмам. Согласно этой схеме, разница в энергиях активации есть не что иное, как эн тальпия образования активного комплекса, в состав которого входит ка-тализатор, из активного комплекса, состоящего только из исходных веществ. Этот же рисунок иллюстрирует случай, когда катализатор К2 вызывает процесс, вообще не идущий без его участия и приводящий к образованию иных продуктов реакции по сравнению с результатом действия катализатора К1 и результатом некаталитической реакции,. Опыт дает много примеров подобного селективного действия катализаторов. Например, окисление тиосульфат иона перекисью водорода в водном растворе в присутствии иодид-ионов описывается следующим [c.278]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    Фирма Селаниз на заводе в Бишопе осуществляет некаталитическое окисление пропана и бутана в паровой фазе по так называемому методу Блодуорси [118]. [c.89]

    Заслуживает внимания недавно запатентованный фирмой Нейшнл рисерч корпорейшн метод прямого некаталитического окисления этана в окись этилена. При работе по этому методу кислород смешивают со свежим этаном и рециркулирующим газом с таким расчетом, чтобы молярное отношение СаНе Оа в смеси составляло от 10 до 15. Реакция проводится прп 500—700° под давлением от 1 до 7 ат. Газы, выходящие из реактора, пропускаются через окись алюминия для разложения перекиси водорода, затем охлаждаются и поступают в скруббер для конденсации окиси этилена, формальдегида и ацетальдегида. Часть неконденсирующихся газов сбрасывается, а остальные подаются на рециркуляцию в реактор. [c.93]

    В первых опытах по окислению этилена получался только формальдегид. Шутценбергер [17] обнаружил, что окисление начинается при температуре около 400°С с образованием небольших количеств формальдегида. Вильштеттер и Боммер [18] изучали эту реакцию сначала с целью получения формальдегида как каталитическим, так и некаталитическим путем. При низкой концентрации этилена в воздухе при 600 °С и коротком времени реакции 3% этилена превращается в продукты, половину которых составляет формальдегид. [c.226]

Рис. 6.8. Схема производства двухатомных фенолов некаталитическим окислением диалкилбензолов (фирма Distillers Со) Рис. 6.8. <a href="/info/63180">Схема производства</a> <a href="/info/29766">двухатомных фенолов</a> <a href="/info/419367">некаталитическим окислением</a> диалкилбензолов (фирма Distillers Со)
    Катализаторы понижают энергию активации и уменьшают порядок реакции. При гомогенном некаталитическом окислении 302 энергия активации Е > 280 кдж моль ЗОд реакция имеет третий порядок (и = 3). На малоактивном окисножелезном катализаторе Е — 120—160 кдж молъ ЗО3, температура зажигания катализатора 3 >600° С, а порядок реакции п = 2,5 [2].  [c.140]

    Открыты сотни веществ, ускоряющих реакцию окислення ЗОг, но были применены в производстве лишь три катализатора 1) металлическая платина 2) оксид железа 3) пятиоксид ванадия. На примерах действия этих катализаторов можно показать влияние понижения энергии активации и уменьшения порядка реакции на скорость процесса. Согласно уравнению 2502 + 02—>-250з скорость прямой реакции гомогенного некаталитического окисления 502 должна выражаться уравнением третьего порядка (порядок реакции п = 2+ 1 = 3)  [c.128]

    Одновременно со снижением энергии активации во многих случаях происходит уменьшение порядка реакции. Так, гомогенное некаталитическое окисление сернистого ангидрида происходит по реакции третьего порядка (п = 3) 2SO2-Ь О2 = 250з. При обычных производственных условиях каталитического окисления на малоактивном окисно-железном катализаторе ( =120 — 160 кДж/моль SO2) п — 2,5 на более активном ванадиевом катализаторе п= 1,8, а на самом активном платиновом катализаторе порядок реакции снижается до п = 1 [13]. [c.22]

    Газификация твердого топлива представляет негетерогенный некаталитический процесс. Он включает последовательные стадии диффузии газообразного окислителя, массопередачи и химических реакций неполного окисления. В качестве окислителей при ГТТ используются воздух (воздушное дутье), кислород (кислородное дутье), водяной пар (паровое дутье), а также их смеси (паровоздушное и парокислородное дутье). Природа протекающих при этом реакций, а, следовательно, состав соответствующего генераторного газа, зависят от типа окислителя. [c.209]

    Получение двухатомных фенолов окислением диалкилбензолов. Этот способ является аналогом производства обычного фенола кумольным методом. Основы метода производства резорцина и гидрохинона из диизопропилбензола были разработаны в конце 1940 гг. в СССР и за рубежом. В настоящее время существуЛт два метода окисления диалкилбензолов — некаталитический и каталитический. [c.185]

    Некаталитическое окисление метана при атмосферном давлении приводит в осповпом к образованию окиси углерода  [c.274]

    Относительно невысокая энергия связи Саг—Н, а также малая стабильность продуктов присоединения кислорода к лишенным заместителей ароматическим углеводородам приводит к тому, что при некаталитическом окислении полициклических ароматических углеводородов развиваются процессы окислительной де-гидрополиконденсации, ведущие к образованию высокомолекулярных продуктов. [c.45]

    В газовой фазе некаталитическое окисление циклогексана кислородом воздуха происходит прп нагревании смеси до 340°С. Жидкофазное 01сисление происходит при 130—160 °С, давлении 1—10 МПа при взаимодействии с кислородсодержащими соеди  [c.216]

    Процесс прямого окисления применяют, когда в газе недостаточно HjS (2-15%) для поддержания некаталитического горения в печи. Газ предварительно нагревают, смешивают с воздухом и направляют прямо в каталитический реактор, в котором HjS превращается в S и SOj. Для более полного удале-ния серы можно использовать более чем один реактор с промежуточным охлаждением, как это делалось в описанных выше процессах. В этом случае вводится бофше воздуха на промежуточных стадиях /2, 10, 11, 14, 15/. [c.279]

    В настоящее время фирма Ситиз сервис , по-видимому, также проводит окисление пропана и бутана по процессу, аналогичному методу фирмы Силениз корпорейшн оф Америка . Эта последняя фирма осуществляет некаталитическое (термическое) окисление пропана и бутана воздухом при 350—450° и давлении 3—20 ата углеводород берут в избытке. Бутан реагирует легче, чем пропан, и им предпочитают пользоваться как исходным сырьем. Продукты реакции разделяют на конденсат, состоящий из водного раствора органических кислородных соединений, и на неконденсирую-щиеся отходящие газы, которые возвращают в процесс. Часть отходящих газов выводят из системы, чтобы предотвратить накопление в ней инертных примесей однако из этих сбрасываемых газов выделяют пропан и бутан, возвращаемые в систему. Превращение углеводородов составляет 100%i. Не менее 15—20% углеводородов сгорает до окислов углерода и воды. Получаемая смесь органических соединений имеет сложный состав в нее входят формальдегид, метиловый спирт, ацетальдегид, уксусная кислота, н-пропиловый спирт, метилэтилкетон и окиси этилена, пропилена и бутилена. По этому методу работают заводы в г. Бишопе (шт. Техас) и г. Эдмонтоне (Канада). [c.72]

    В последнее время для сожжения трудноокисляющихся веществ предлагалось повышать активность окиси меди различными добавками (например, очень хорош катализатор ЗСиО+СГгО.,). Применяют также и ЖиО , позволяющую проводить полное сожжение при 400—450°. С этим катализатором можно работать в токе воздуха, а не кислорода, что очень удобно. В случае галогеносодержащих веществ применяют смесь МпОа+РЬО . Кроме каталитических методов полного окисления, известны и применимы методы некаталитического окисления. Так, уже давно для этой цели применяют раствор перманганата. Имеется значительная литература по применению для реакций окисления в качестве катализатора серной кислоты с активирующими добавками КНЗО , УзОз, Hg, Си, Зеидр. [c.176]

    Методом некаталитического окисления спиртов с помощью хромовой смеси, азотной кислоты, хромового ангидрида, персульфатов и т. д. получали альдегиды, кетоны и карбоновые кислоты. Уже в 1819 г. было установлено, что при неполном сгорании спирта в спиртовых лампочках образуется ламповая кислота , содержащая уксусную кислоту и некое от эфира отличное вещество , которое известно теперь как ацетальдегид. Ацетальдегид был получен каталитическим. Ван-Марумом при пропускании паров этилового спирта над накаленными металлами ( обуглероженный водород ). [c.202]


Смотреть страницы где упоминается термин Окисление некаталитическое: [c.704]    [c.27]    [c.39]    [c.186]   
Технология органического синтеза (1987) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Возможность некаталитического окисления в объеме

Некаталитическое окисление графита другими газами

Некаталитическое окисление графита кислородом

Некаталитическое окисление циклогексана

Окисление этилена некаталитическое

Октан некаталитическое окисление



© 2024 chem21.info Реклама на сайте