Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Режимы процесса

    Эти температурные режимы процесса упаривания растворов аммиачной селитры близки к предельным, при незначительном превышении которых может начаться опасное разложение аммиачной селитры. Поэтому необходимо принимать меры, полностью исключающие превыщение регламентированной температуры процесса и снижение термостабильности селитры. Должны приниматься-особые меры, исключающие повышение кислотности раствора, содержание в нем катализирующих примесей и масел. [c.53]


    Кривые ИТК используют для определения фракционного состава сырой нефти, расчета физико-химических и эксплуатационных свойств нефтепродуктов и параметров технологического режима процессов перегонки и ректификации нефтяных смесей. Кривые ИТК нефти и нефтяных фракций обычно имеют монотонный характер, что говорит о равномерном выкипании смеси, т. е. о примерно одинаковом содержании в смеси различных компонентов. Кривые ИТК нестабильных бензинов, керосинов и дизельных топлив имеют вначале ступенчатую форму и далее непрерывный характер. Каждая ступень кривой определяет температуру выкипания индивидуального компонента и содержание его в исходной смеси. [c.19]

    Чтобы отвести столь значительное количество тепла, сохраняя возможность точного контроля теплового режима процесса, через реакционный объем пропускают систему труб (при синтезе под нормальным давлением примерно 600 трубок на реактор емкостью 10 по загружаемому катализатору). Катализатор засыпается между трубок, а водой, находящейся в трубках, поддерживается заданная температура. При температурах синтеза вода в системе должна находиться под давлением (принцип парового котла). [c.90]

    Частые нарушения режима работы котлов-утилизаторов и остановки агрегатов аммиака обусловлены загрязнениями поверхностей нагрева твердыми отложениями катализаторов, уносимых и трубчатых печей и шахтных конверторов, а также частицами футеровки этих аппаратов. Отложения приводят к резкому ухудшению теплопередачи и снижению выработки пара, а также к нарушению технологического режима процесса, что приводит к аварийным ситуациям и авариям. Наибольший унос твердых частиц происходит при разрушении катализатора. [c.21]

    В зависимости от режима процесса и от длины цепи исходного парафина из каждых 100 весовых частей последнего получают 6—16 весовых частей головных погонов , процентный состав которых различен, смотря по температуре конца перегонки. [c.471]

    Если постепенная перегонка рассматриваемой системы ведется при непрерывной подаче сырья в перегонный куб, то при установившемся режиме процесса материальный баланс перегонки представится уравнением [c.82]

    Расход инертных газов зависит от многих факторов и главным образом от вида сырья и температурного режима процесса. Объем несконденсированных легких углеводородов меняется в пределах 0,005—0,42% (масс.) на мазут, а инертных газов — 0,001—0,14% (масс.), при этом доля воздуха в инертных газах достигает 70— 90% (об.). В первом приближении объем легких углеводородов, уходящих с верха колонны, рекомендуется принимать равным 0,33% (масс.) на мазут или 3,1 кг/м газа при температуре сырья [c.200]


    Параметры технологического режима процесса разделения смеси ксилолов с органическим растворителем приведены ниже  [c.257]

    В схеме на проток (в одной установке) обычно осуществляется жесткая связь каталитического риформинга с гидроочисткой. В этом случае весь избыточный водородсодержащий газ риформинга проходит через блок гидроочистки, и этого количества (80—100 м при нормальных условиях на 1 м сырья) достаточно для поддержания соотношения водород сырье. Эта схема удобна в эксплуатации, не требуется дополнительных расходов на дожимающие устройства, но в то же время малейшие колебания в процессе риформинга дают колебания в подаче водорода в блок гидроочистки, что отражается на режиме процесса, эффективности катализатора и условиях работы печей и сырьевых теплообменников.. [c.71]

    В процессе эксплуатации производства возникает необходимость в изменении технологической схемы или режима процесса. Важно, чтобы эти изменения не снизили уровень безопасности производства, а для этого любое изменение (незначительное или крупное, временное или постоянное) должно быть проанализировано, разработано, запроектировано, испытано и осуществлено с такой же ответственностью, как и основной проект. К обсуждению, разработке, проектированию и осуществлению изменений должны привлекаться высококвалифицированные специалисты исследовательских, проектных организаций, а также старший обслуживающий персонал завода. [c.69]

    Безденежных A.A. Расчет оптимального режима процесса в адиабатическом реакторе на основе метода линейного программирования.— В сб. ОКБА Автоматизация химических и нефтехимических производств . Вып. 2. М., НИИТЭХИМ, 1965. [c.166]

    В производстве нигрозина на стадии конденсации анилина и анилиновой соли с нитробензолом произошла авария, вызванная нарушением параметров технологического режима. Процесс протекал очень бурно, и пары анилина вследствие перегрузки обратного холодильника выбросило в производственное помещение. Паровоздушная смесь, инициированная искрой, вспыхнула, и возник пожар. [c.143]

    Для поддержания необходимого температурного режима процесса гидрирования подбирают скорость парогазовой смеси в аппарате и высоту слоя катализатора такими, чтобы не происходило чрезмерного перегрева реагирующих веществ. Для регулирования температуры при газофазном гидрировании применяют большой избыток водорода по сравнению с теоретически необходимым. Он составляет в различных процессах от 5 1 до (20—30) 1. Избыточный водород аккумулирует выделяющееся тепло, предотвращая чрезмерный перегрев реакционной массы. При выходе из-под контроля экзотермических реакций происходит резкое повышение температуры, что может привести к аварии. Описан случай разрушения колонны синтеза изобутилового спирта из окиси углерода и водорода. [c.333]

    В промышленных условиях взрывоопасные хлороводородные смеси могут получаться при электролизе раствора поваренной соли, сжижении электролизного хлора и синтеза хлористого водорода из элементов. Концентрационные пределы воспламенения смеси водорода с хлором составляют от 3—6 до 84—92,5% (об.). Аварии, связанные с получением или применением хлора, обычно вызываются различными нарушениями технологического режима процесса. [c.350]

    Источниками воспламенения этой смеси могут быть электростатический заряд полиэтиленовой пыли и сажи, горячие поверхности выброшенных твердых частиц, искры и др. Однако наиболее вероятным является самовоспламенение при залповом выбросе и смешении с воздухом горячих газов и твердых частиц, температура которых зависит от теплового режима процесса. [c.107]

    Следует обратить внимание на необходимость принятия мер по предупреждению возможности образования взрывоопасных газовых смесей в аппаратуре и особенно в топочном пространстве печей. Известен случай, когда при разрущении трубы из нержавеющей стали диаметром 127 мм в топочное пространство печи нефтеперерабатывающего завода были выброшены углеводороды. Взрывом был разрушен технологический аппарат. Разрушение труб в печи пиролиза может быть вызвано их перегревом вследствие нарушений технологического режима процесса, а также отложениями кокса на стенках, что приводит к ухудшению теплопередачи и перегреву металла. Кроме того, материал труб и монтаж поверхностей теплообмена могут быть некачественными. Поэтому в ряде процессов пиролиза для снижения скорости отложения кокса и удаления его с внутренней поверхности стенки в сырье перед зоной реакции ( = 650—700 °С) добавляют раствор поташа, который является эффективным катализатором процесса окисления кокса водяным паром. [c.321]

    Контроль за режимами процессов крекинга и регенерации имеет первостепенное значение для достижения требуемых качеств и выходов продуктов и предупреждения быстрого износа катализатора. [c.202]


    Равновесную активность (индексы активности указаны на стр. 39) циркулирующего катализатора поддерживают на желательном уровне не только путем регулярной добавки экономически оправдываемого количества свежего катализатора, но параллельно ч этим также и путем строгого контроля за режимом процесса н качеством перерабатываемого сырья. [c.202]

    Качества продуктов каталитического крекинга зависят от свойств перерабатываемого сырья и применяемого катализатора, а также от режима процесса. [c.228]

    Температурные режимы процессов крекинга сырья и сжи- гания кокса регулируются путем изменения кратности циркуляции катализатора, температуры конечного нагрева сырья в змеевиках печей и воздуха в подогревателе. При необходимости, например в случае повышен наг г. выхода кокса и накопления его на катализаторе, реактор может быть отключен, а непрерывная регенерация катализатора продолжена [221]. [c.245]

    Нередко реактор рассчитывается для такого режима процесса, который отличается в отношении объемной скорости и кратности циркуляции катализатора от режима работы реактора опытней установки. В таких случаях пересчет численного значения пока- [c.246]

    Большие количества хлористого этила потребляют также в производстве этилцеллюлозы, которая в противоположность метилцеллюлозе образует растворимые в органических растворителях водостойкие пленки. Поэтому этилцеллюлозу широко применяют в лакокрасочной промышленности. Алкалицеллюлозу обрабатывают хлористым этилом в облицованном никелем автоклаве с мешалкой при температуре около 205°. В зависимости от режима процесса достигается различная глубина этилирования. После удаления спирта, эфира и непрореагиро-вавшего хлористого этила сырой продукт промывают водой и сушат. Этилцеллюлоза растворима в смесях хлороформа со спиртом, в ледяной уксусной кислоте, амилацетате, нитрометане и т. д. [186]. Этилцеллюлоза (более стойка, чем сложные эфиры целлюлозы, не гидролизуется, поэтому значительно устойчивее к действию кислот и щелочей. Обычно получаемая на промышленных установках этилцеллюлоза содержит [c.214]

    Производительностью аппарата П называется масса готового продукта Опр, фактически вырабатываемого в единицу времени х ири заданных условиях (режиме) процесса производства. Максимально возможная производительность а[1парата ирн оптимальных условиях процесса производства называется е 0 мощностью Таким образом, мощность аппарата есть его максимальная производительность  [c.56]

    Из рис. VI.7 видно, что ири больших значениях параметра б фактор эффективности может принимать различные значения при фиксированных расчетных параметрах процесса. Этому соответствует существование нескольких стационарных режимов процесса на пористой частице катализатора, некоторые из которых могут оказаться неустойчивыми. Анализ этих явлений проводится в работах, указанных в библиографии (стр. 147). Аналогичные явления могут возникать и под влиянием внешнедиффузионного торможенпя процесса (см. раздел IX.7). Определение устойчивости дано в разделе 11.4. [c.144]

    На рис. IX.18 показаны два профиля температуры и степени полноты реакции по длине реактора, соответствующие двум стационарным режимам процесса. Здесь снова возможны резкие изменения режима при постепенном пз-менении параметров процесса. Предположим, что Т соответствует линии на рпс. IX.19, так что стационарный режим определяется точкой пересечения I. Последовательность лпнпй от до 5 отвечает последовательному увеличению Tf до значения, соответствующего данному стационарному режиму. Тогда, [c.284]

    Так как периодический реактор всегда работает в нестационарном режиме, процесс должен проводиться по определенному графику. Если же предоставить его самому себе, реакция постепенно придет к равновесию и остановится. График процесса должен составляться с учетом не только самой реакции, но и промежуточных операций удаления продуктов и заполнения реактора исходной смесью. Если ц- — стоилюсть одного моля вещества А,-, то стоимость [c.309]

    Выход отгона зависит от температуры вспышки исходного сырья и режима процесса. При соблюдении требований к сырью и нормальном ведении процесса выход отгона составляет 1,5% (масс.) на сырье. Если исходное сырье имеет высокую температуру вспышки (низкое содержание фракций, выкипающих до 150 °С), то в процессе гпдроочистки отгон составит не выше0,5% (масс.). [c.35]

    Полная математическая модель процесса включает основные переменные процесса, связи между основными переменными в статике, ограничения на процесс, критерий оптимальности, функции оптимальности, связи между основными переменными в данамике. Эта модель предназначена для прогнозирования оптимальных режимов процесса и получения информации, необходимой при разработке автоматизированной системы управления объектами нефтепереработки и нефтехимии. [c.9]

    Как оточалось ранее,моделирование дикамических режимов процессов разделения многохомпонентн смесей является более сложный и трудоёмкий, поэтому рассмотрим модель, в которой Ив учитывается кинетика массопередачи. [c.90]

    Расход водорода зависит от назначения процесса, используемого сырья, катализатора, режима процесса, глубины гидрок — рек гнга и других факторов. Чем легче продукты гидрокрекинга и тяжелее гидрокрекируемое сырье, тем больше расход водорода и тем выше должно быть соотношение водород сырье. [c.231]

    Проковка оказывает влияние на механические свойства металла шва, причем характер в]шяния целиком определяется тепловым и механическими режимами процесса. Как правило, возрасгает твердость, вледствие чего последний слой шва проковке не подвергают. Этот слой улучшает структуру нижележащего слоя, изменившего свои [c.202]

    Пример графического изображения зависимостей Аррениуса представлен на рис. 3.43. Прямой 1 характеризуется работа свежего катализатора. При осуществлении процесса постоянная степень удаления серы обеспечивается постепенным повышением температуры. Кажущаяся константа скорости реакции постоянна и в конкретном случае равна. Температура в течение работы катализатора повышается по линии АВ до полной отработки катализатора. Прямая 2 характеризует процесс на отработанном катализаторе. Продолжив прямые 1 и 2 цо пересечения, находится точка, через которую может быть проведена прямая, описьгааю-щая процесс в любой степени отработки катализатора. Владея такими зависимостями, можно предопределить необходимые изменения в режиме (температура, объемная скорость подачи сырья), чтобы обеспечить заданную степень удаления серы, соответствующую кажущейся константе скорости реакции Аг,. Или наоборот, какие изменения в глубине удаления серы можно ожидать при внесении изменений в режиме процесса. [c.141]

    Выше указывалось, что в зависимости от перерабатываемого сырья, условий его переработки, характеристики и длительности работы катализатора может накопиться много отложейий. Масса отложений может превышать массу исходного катализатора. Состоят эти отложения в основном из углерода, ванадия, никеля, серы меньше содержится водорода, железа, натрия, кальция (табл. 3.12). Из данных таблицы можно заключить, что уровень содержания углерода определяется, в первую очередь, режимом процесса (пониженным давлением, см. п. 9 и 10), характеристикой сырья и длительности провеса (см. п. 12—14). Содержание металлов (ванадия, никеля) определяется главным образом содержанием их в перерабатываемом сырье и длительностью пробега. Содержание серы пропорционально содержанию металлов (рис. 3.46). [c.145]

    Опасность получения аминосоедииений с использованием аммиака обусловлена высокими температурами (200°С) и давлениями (до 10 МПа), необходимостью строгого поддержания в установленных пределах соотношения продуктов, подвергаемых аминиро-ванию, и водного раствора аммиака, а также температурного режима процесса. [c.120]

    С ростом температуры, но при одной и той же глубине разложения сырья, выход сухого газа в первом случае повысился в 1,3 раза (при повышении температуры на 28°), а во втором в 1,7 раза (при повышении температуры на 55°). В то же время выход кокса сни- зился против первоначального соответственно на 23 и на 30%. Хотя эти показатели и не могут быть распространены на все видь .-, сырья и разнообразные осуществляемые на практике режимы процесса, однако они подтверждают тот факт, что при одной Г И той же глубине крекинга выход газа возрастает, [c.82]

    Получаемая в результате каталитической очистки тяжелого дебутанизированного бензина фракция Св содержит 84—88% объемн. изопентана и небольшое количество непредельных углеводородов (3—6%). Концентрированная изопентановая фракция, называемая компонентом испаряемости, добавляется в авиабензин дпя довеления упругости его паров до нормированной величины (360 мм рт. ст. по Рейду). Добавка изопентана повышает не только упругость паров авиабензина, но и его октановое число. Изопентан имеет высокое начальное октановое число (90 пунктов) и высокую приемистость к тетраэтилсвинцу. Выход фракции Сб составляет в зависимости от качеств перерабатьшаемого сырья и режимов процессов крекинга и очистки 6—12% вое. от исходного сырья — керосина или солярового дистиллята сравнительно легкого фракционного состава. [c.223]

    Абсолютные и относительные выходы продуктов каталитического крекинга данного сырья зависят не только от глубины его превращения, но и от режима процесса. Например, с ростом температуры при одной и той же глубине крекинга сырья выход сухого газа повьпнается, а кокса уменьшается (см. главу IX). Кроме того, выходы продуктов зависят от углеводородного состава сырья. [c.228]

    Необходимо отмегить, что содержание серы в бензине зависит не только от характера и количества сернистых соединений в сырье, но и от г. убины крекинга и режима процесса. Содержание серы в бензине увеличивается с цоввдцением его конца киае1шя. [c.231]

    Дпя борьбы с догоранием окиси углерода в верхней части регенератора разбрызгивается вода (конденсат втздяногб пара). С ростом содержания катализатора в потоке газов увеличивается и расход воды вследствие необходимости охлаждения не только-газов, но и повышенного количества уносимого ими катализатора. Как показала практика эксплуатации регенераторов установок модели IV, борьба с догоранием окиси углерода путем разбрызгивания большого количества воды приводит иногда к резкому падению температуры катализатора в плотном слое и нарушению-нормального режима процесса [105]. [c.265]

    При решении задачи оптимизации коэффициент использования сырья у можно рассматривать как переменную величину, значение которой зависит от режима процесса. Если образуется ряд побочных продуктов в количествах, пропорциональных производительности В, которые также реали уются ио некоторым ценам, то получаемая при этом часть стоимости может быть отнесена к снижению расходов па сырье. Формулу для расчета затрат на сырье в данном случае можно записать в виде  [c.16]

    В описанных выше примерах речь шла об определении оптималь-исго стационарного режима процесса, который характерен для [c.22]

    III сят от режима процесса. Для химического реактора это может быть, например, кон-тролируемый состав исходного сырья, не [c.24]

    Выходные параметры х,- (г - I,. . ., п). Под выходными понимают параметры, величины которых определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмуш,ающих параметров. Иногда выходные параметры называют также параметрами с о с т о я н и я, гюдчеркивая тем самым их назначение описывать состояние процесса. Однако понятие параметры состояния является более широким, чем понятие выходные параметры , поскольку к выходным обычно относят только характеристики получаемой продукции, тогда как параметрами состояния служат также характеристики режима процесса, например температуры в различных точках аппарата, составы и т. д. [c.24]


Смотреть страницы где упоминается термин Режимы процесса: [c.34]    [c.169]    [c.234]    [c.184]    [c.175]    [c.16]    [c.23]   
Смотреть главы в:

Производство водорода в нефтеперерабатывающей промышленности -> Режимы процесса




ПОИСК







© 2025 chem21.info Реклама на сайте