Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрическое определение комплекс

    Рассмотрим влияние результатов измерения оптической плот- ности раствора при разных длинах волн на чувствительность и погрешность фотометрического определения. Допустим, что рассматриваемый комплекс имеет спектр поглощения, показан- ный на рис. 4.4, а. Выберем участки спектра, где анализируемое соединение поглощает лучи максимально (при Л = 550 нм) и минимально (при Я = 640 нм). Затем, приготовив окрашен- ные растворы с различными концентрациями так, чтобы [ <5 [c.182]


    Фотометрическое определение при перекрывании спектров комплекса и реагента проводят в области оптимального поглощения лучей, т. е. в том интервале длин волн (или при такой длине волны), где наблюдается максимальная разность Де комплекса и реагента. [c.183]

    Фотометрическое определение металлов. В то время как все молекулы обладают полосами поглощения в какой-нибудь области оптического спектра, пригодными для их фотометрического определения, собственное поглощение сольватированных ионов металлов для фотометрического анализа в общем слишком мало. Поэтому ионы металлов переводят в окрашенные комплексы (табл. 5.24, см. также [73]). При осуществлении реакций комплексообразо- [c.247]

    В рассмотренных примерах причина систематических погрешностей заключалась в химических свойствах используемых в анализе соединений. В других случаях источником погрешностей является примесь посторонних веществ в растворах и в реагентах. Так, хлороводородная кислота нередко содержит примеси железа (П1), При фотометрическом определении последнего в виде роданидного комплекса необходимо пользоваться только химически чистой кислотой, иначе железа будет найдено больше, чем его в действительности было в анализируемом материале. [c.56]

    Пероксидные комплексы. Пероксид водорода образует комплексы с титаном, ванадием, церием, ниобием, танталом и др. Чаще всего пероксидные комплексы применяют для фотометрического определения титана, ванадия, ниобия и тантала. [c.268]

    При выборе органического реагента для фотометрического определения тех или других ионов необходимо учитывать многие факторы, один из которых — спектральная характеристика реагента и его комплекса с [c.312]

    Сущность метода заключается в образовании желтого фосфорнованадиевомолибденового комплекса, устойчивого в азотнокислом растворе,и фотометрическом определении его. [c.72]

    Сульфофталеины проявляют при взаимодействии с большим числом катионов сильный батохромный сдвиг (рис. 2.35). Способность образовывать интенсивно окрашенные комплексы в сильнокислых средах стимулировала широкое применение их в качестве реагентов для фотометрического определения большого числа катионов [1, 12, 76, 77, 495—503]. [c.263]

    Комплекс экстрагируется нитробензолом и применяется для фотометрического определения натрия [9081. [c.29]

    Для фотометрического определения бериллия пользуются 0,02 7о-ным водным раствором бериллона II. Мешающие элементы комплексуют добавлением 5 %-ного раствора комплексона III, [c.124]


    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    Применяют изоамиловый спирт для экстракции тиоциа-натных комплексов железа при фотометрическом определении ванадия — 8-оксихинолином, молибдена — фенил-гидразином, меди — диэтилдитиокарбаминатом для отделения хлорида лития от других хлоридов щелочных металлов, извлечения нитрата кальция из смеси с нитратом стронция. [c.245]

    Для определения олова предложены какотелин, галлеин, оксин, гематоксилин, диэтилднтиокарбамат, фенилфлуорон и дитиол. Среди названных нет идеальных реагентов, хотя каждый из них имеет свои достоинства, Дитиол нашел более широкое применение по сравнению с другими реагентами в основном вследствие легкой идентификации красного комплекса, образуемого с оловом. Окраска комплексов с некоторыми другими реагентами устойчива только в коллоидных растворах. Попытки извлечь комплекс органическим растворителем приводили к потере чувствительности и ослаблению характерной красной окраски. Для фотометрического определения комплекс диспергируют в водном растворе, при этом можно обнаружить приблизительно [c.413]

    Чувствительность и погрешность фотометрического определения зависят от выбранного интервала длин волн поглощаемого света. Оптимальная спектральная область, в которой проводят фотометрические измерения, определяется спектрами поглощения фотометрируемого комплекса и применяемого реагента. При этом встречаются следующие основные варианты. [c.181]

    Оптимальное значение pH для экстракции пиридилазопафтолата никеля находится в интервале 4,0—8,0. Условия экстракционного разделения и селективного экстракционно-фотометрического определения N1 выполняются при pH = 4,06,0 — для С( , 4,0 — для 1п и 4,0-н 7,0 —для Мп. Поэтому ионы никеля можно определять с помощью ПАН в присутствии соизмеримых количеств Сс], Мп и 2п, экстрагируя хелатный комплекс хлороформом при pH 4,0. При этом отпадает необходимость предварительного отделения или маскирования Сс1, Мп и 2п. [c.221]

    Экстракционно-фотометрическое определение меди этим методом основано на реакции вытеснения свинца из его диэтнлдитнокарбаминатного комплекса в хлороформе (или тетрахлориде углерода)  [c.222]

    ПРИМЕРЫ ОРГАНИЧЕСКИХ РЕАГЕНТОВ, ОБРАЗУМЩИХ ОКРАШЕННЫЕ КОМПЛЕКСЫ С ИОНАМИ МЕТАЛЛОВ И ИСПОЛЬЗУЕМЫХ ДЛЯ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЭТИХ МЕТАЛЛОВ  [c.247]

    На равновесие реакций комплексообразования часто влияет концентрация ионов водорода. Кроме того, могут происходить конкурирующие реакции, когда в анализируемом растворе наряду с определяемым элементом присутствуют другие компоненты. В значительной степени подобные явления наблюдают в случае малоустойчивых и потому неудобных для аналитических целей комплексов, какими, например, являются тиоцианатный комплекс Ре(1 II), тетрамминат Си(П) и многие другие. Концентрация таких малоустойчивых комплексов заметно изменяется уже при добавлении нейтральных солей (КН4С1). Поэтому при разработке методик фотометрического определения металлов следует непременно оценивать возможное влияние подобных конкурирующих реакций (гл. 3.1). [c.248]

    Для экстракционно-фотометрического определения серебра его извлекают диэтилдитиофосфатом, содержащим радиоактивный фосфор Комплекс полученного серебра экстрагируют ССЦ, активность которого измеряют. В холостом опыте активность U была 125 имп мин. Эталонная проба, содержащая 50 мкг серебра в 50 мл, после экстракции 10 лг. U показала активность 3820 имп/мин. Из навески исследуемого материала 1,2 г после соответствующей обработки было получено 25 мл раствора, из которого комплекс серебра с диэтилдитиофосфатом был извлечен 10 мл ССЦ. Активность экстракта оказалась равной 1220 uMnjMUH. [c.241]

    Для отделения мышьяка, сурьмы, меди, свинца, ртути, кадмия и других ионов от олова используют осаждение их в виде сульфидов в присутствии фто-рид-ионов, которые связывают олово. При фотометрическом определении кобальта в виде хлоридного или роданидного комплексов вредное влияние железа (П1) устраняют, связывая его в прючный фторидный комплекс. [c.267]

    Большое значение в аналитической химии имеют фосфатные комплексы. Их широко применяют для маскирования, например, железа(III) при фотометрическом определении титана в виде пероксидного комплекса. При этом железо маскируют фосфорной кислотой оно образует растворимые в воде бесцветные комплексы [FeHP04]+, [Fe (904)2] или [Ре(Р04)з] -. [c.268]

    Сульфатные комплексы применяют для косвенного фотометрического определения сульфата. При этом готовят комплексы циркония с ализарином. В присутствии сульфат-ионов образуется сульфатный комплекс циркония и цирконализариновый лак разрушается, в результате чего растзор обесцвечивается. [c.269]


    Необходимо иметь в виду, что образование разнолигандных и разнометалльных комплексов может играть и отрицательную роль при фотометрическом определении, поэтому при построении градуировочных графиков в раствор сравнения следует вводить те же компоненты, которые содержатся в исследуемом растворе. [c.300]

    В фотометрическом анализе иногда удобно применять обозначения еусл (условное). Это целесообразно, в частности, при косвенных методах фотометрического анализа. Так, фотометрическое определение фтора основано на ослаблении окраски, например, роданидного комплекса железа. Наблюдаемое ослабление оптической плотности ЛЛ можно пересчитать на известную концентрацию фтора и выразить в виде вусл-Разумеется, это не характеризует светопоглощение какого-нибудь соединения фтора. Также целесообразно применять это обозначение при каталитических методах и т. п. [c.321]

    Пример 2. Фотометрическое определение железа с сульфосалициловой кислотой и с батофенантролином. Определение Ре(П1) с сульфосалициловой кислотой проводят обычно при pH 8—10 в форме трис-комплекса [c.28]

    Определение хрома основано на взаимодействии хрома с дифенилкарбаэидом с образованием комплекса красно-фиоле-тового цвета ж фотометрическом определении последнего. [c.62]

    Фотометрическое определение висмута производят в форме иодидных комплексов (0,05—0,5 мг В ), тиомочевинного комплекса (0,1—4 мг В1), дитизонатного комплекса (—0,01 мг В1). [c.247]

    И одо-8-окси-5-хинолинсульфокислота с алюминием образует комплекс с > тах = 370 нм, который использован для фотометрического определения алюминия. [c.24]

    Спектры поглощения и состав комплекса. Для фотометрического определения алюминия наиболее часто применяется алюминон . Для максимума поглощения комплекса алюминия с алюминоном указывается длина волны 528 [7581, 530 [780], 535 [776, 1287] и 540 нм [545]. По нашим данным, максимум находится при 535 нм (рис. 5). Алюминий и алюминон входят в ко.м-плекс в соотношении 1 1. В молекуле алю.минона в образовании комплекса с алюминием участвуют солеобразующая и карбонильная группы хиноидного кольца. Строение комплекса можно пред- [c.91]

    Хромазурол S с алюминием в присутствии хлорида цетилтри-метиламмония образует синий тройной комплекс, который можно использовать для фотометрического определения алюминия [361а]. Оптимальное значение pH для образования комплекса 5,8—6,0 максимум поглощения наблюдается при 620 нм. Молярный коэффициент погашения комплекса 1,08-10 . Закон Бера соблюдается при 0,01—9,06 мкг к мл. Определению алюминия мешают Ве, Ga, Ti, и, V, Zr, u, Fe, Сг, Sn, Та влияние u и Fe (Н) устраняют [c.107]

    Ксиленоловый оранжевый — 3,3-бис- (N, N-дикарбоксиметил) -<аминометил)-о-крезолсульфофталеин — образует с алюминием интенсивно окрашенный комплекс красного цвета. Это использовано для фотометрического определения алюминия. [c.107]

    Хромоксан фиолетовый Р как реагент для фотометрического определения алюминия предложен Мустафиным и сотрудниками [230, 231, 232, 284а]. Реагент и комплекс алюминия поглощают при одной и той же длине волны 500 нм, но это не является помехой, так как реагент окрашен очень слабо. Молярный коэффициент погашения комплекса 52 500 [231], состав комплекса 1 1, кажущаяся Кнест = 4,4-10 [231] максимальная окраска наблюдается при pH 5. Окраска комплекса на холоду развивается медленно, максимум окраски достигается через 3 часа, при нагревании до кипения окраска развивается сразу. Лучше работать со свежеприготовленным раствором реагента, со старыми растворами получаются несколько заниженные результаты. Чувствительность метода 0,01 мкг М мл. Закон Бера соблюдается в широких пределах концентраций алюминия. [c.112]

    Определение с арсеназо. Арсеназо— бензол-2-арсоновая кислота-(1 -азо-7)-1,8-диоксинафталин-3,6-дисульфокислота, натриевая соль, с алюминием образует фиолетовый комплекс, который использован для фотометрического определения алюминия 1198, 214, 215, 503]. Наибольшая интенсивность окраски комплекса наблюдается при 575—580 нм [214, 656] и pH 5,8 [198]. В этих условиях поглощение самого реагента довольно сильное. Как оптимальное значение pH указывается 5,1—5,8 [198, 214, 503] и 6,1— 6,8 [656]. Для создания среды лучше использов 1ть в данном случае уротропин [198, 214]. Молярный коэффициент погашения комплекса 12000 [ 656]. Окраска развивается за 15 мин. и остается постоянной несколько часов [214, 215, 656]. С увеличением количества реагента оптическая плотность возрастает, достигая максимума при содержании 1,0 мл 0,05%-ного раствора в 10 мл фотометрируемого раствора. С дальнейшим увеличением количества реагента оптическая плотность уменьшается [215]. Чувстрительность определения на фотоколориметре 0,5 мкг А1/10 мл [215]. Закон Бера соблюдается при содержании 1—8 л[c.127]

    Определение с хинализарином. Кольтгоф [888] для фотометрического определения алюминия предложил хинали-зарин (1,2,5,8-тетраоксиантрахинон). Однако в варианте Кольтгофа хинализарин пригоден лишь для качественного определения, так как окрашенный комплекс имеет тенденцию осаждаться. Хинализарин оказался пригодным и для количественного определения алюминия после того, как был найден растворитель для растворения окрашенного лака. Для этой цели применяют смесь бутилкарбитола с водой [532]. Окрашенный раствор фотометрируют при 570 нм. Алюминий и хинализарин входят в комплекс в соотношении 1 3 [532], по другим данным 2 3 [6011. Оптимальная среда pH 5. Закон Бера соблюдается при 0,05—2,0 мкг РЛ/мл. Определению алюминия не мешают 20-кратные количества Мп, Сс1, Рс1 и Зп, 40-кратные количества2п и 1000-кратные количества М . ВлияниеСи и Ре устраняют введением 1 мл 1%-ного раствора диэтилдитиокарбамината через 20—25 мин. после добавления хинализарина. [c.131]

    Прииер 12.1. При экстракционно-фотометрическом определении палладия его экстрагировали в дихлорэтан в форме нитрон-иодидного комплекса при равенстве объемов водной и органической фаз. Рассчитать коэффициент распределения О и степень экстракции -й(%), если исходная концентрация Рс в водной фазе /(Рс12 ) = 2,5 мкг/смЗ концентрация РЙ в водной фазе после экстракции С(Рс1) = 0,020 мкг/см . [c.173]

    Эти реагешы образуют с ионами многих металлов ингенсивно окрашенные комплексы и используются в качестве иццикаторов в комплексонометрии и реагентов для фотометрического и экстракционно-фотометрического определения элементов. [c.174]

    Висмутол П — белые или желтоватые тонкие игольчатые кристаллы, ш = 250°С. Растворим в воде (2,6 г в 100 мл), ацетоне, горячем этаноле. Обладает восстановительными свойствами. Образует с теллуром при pH 2,3 (в присутствии ацетатного или монохлорацетатного буфера) комплекс желтого цвета, который может экстрагироваться бензолом. Применяют для фотометрического определения палладия, селена, теллура, висмута, таллия и мышьяка. [c.131]


Смотреть страницы где упоминается термин Фотометрическое определение комплекс: [c.354]    [c.17]    [c.329]    [c.290]    [c.298]    [c.313]    [c.576]    [c.112]    [c.24]    [c.27]    [c.177]    [c.176]    [c.152]   
Аналитическая химия хрома (1979) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы, определение



© 2025 chem21.info Реклама на сайте