Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий определение фотометрическое

    Из других соединений диметилглиоксима имеет значение комплекс железа (II), на образовании которого основан один из широко применяемых методов фотометрического определения железа. Диметилглиоксим и другие диоксимы образуют также более или менее интенсивно окрашенные комплексы с медью, палладием, кобальтом и другими, однако эти соединения не имеют существенного значения для фотометрического анализа, [c.303]

    Как видно из приведенных данных, прямому фотометрическому определению ртути практически не мешают многие тяжелые, цветные, щелочные и щелочноземельные металлы. Определению мешают серебро, медь, золото, платина и палладий. Такая высокая селективность определения ртути, достигаемая за счет проведения реакции в сильнокислых средах, позволила разработать метод ее прямого определения, который может быть рекомендован для анализа сточных вод. [c.43]


    На сыщенный водный раствор. К диэтилдитио-фосфату никеля прибавляют дистиллированную воду и оставляют стоять на 12 час., время от времени встряхивая. Растворение идет обычно медленно. Концентрация насыщенного раствора — около 0,06 мол л. Раствор имеет зеленый цвет. Применяют его для обнаружения молибдена, фотометрического определения следов меди, висмута, палладия, для отделения кадмия от цинка, для определения свинца в присутствии бария, кальция, цинка и т. д. [c.91]

    Диэтилдитиофосфат никеля применяется для фотометрического определения следов палладия в присутствии платины и других элементов, фотометрического и потенциометрического определения [c.172]

    Для экстракционно-фотометрического определения теллура готовят 5 %-ный раствор, для осаждения таллия — 1 %-ный раствор в разбавленной (1 1) уксусной кислоте. Рений осаждают также 5 %-ным раствором в уксусной кислоте (1 1) перхлорат осаждают 5 %-ным раствором. Палладий определяют фотометрически с 0,5 %-ным раствором в хлороформе, платину осаждают 5 %-ным раствором в уксусной кислоте (1 1). [c.136]

    До 0,0005% магния в палладии определяют фотометрическим оксихинолиновым методом [270]. Палладий маскируют цианидами, оксихинолинат магния экстрагируют хлороформом при pH 10—10,2 в присутствии бутилцеллозольва и экстракт фотометрируют при 405 нм. Магний в свинце можно определять фотометрическим методом с титановым желтым [102]. Об определении магния в металлическом натрии см. в [1146]. [c.215]

    Диэтилдитиофосфат никеля применяется для фотометрического определения следов меди в различных материалах [1, 2, 3], фото.метрического определения палладия [4], висмута [5], отделения кадмия от цинка и других элементов [6], определения свинца в присутствии бария, кальция, цинка и других элементов [7], потенциометрического титрования меди [8], обнаружения. молибдена [9] и др. [c.33]

    Фотометрическому определению палладия не мешают кратные весовые количества следующих катионов Fe(ll), Fe(lll), Ni, V(IV), Zn, Sn(ll)-1000 Mo(VI) - 400 o(ll), Pb, Rh(lll), Nb - 100 u(ll), Th, Zr - 10 Pt(IV), Pt(ll), Au(lll), Ru(lll)-1. [c.7]

    Амил-8-меркаптохинолин предложен для экстракционно-фотометрического определения палладия в различных объектах [ 12]. [c.10]

    Фотометрические методы. Ионы многих металлов образуют довольно устойчивые коллоидные сульфиды, которые можно применять для количественного определения S . Описано фотометрирование окрашенных в желтый цвет золей сульфидов кадмия [420, 839] белых — цинка [839], оранжево-желтых — висмута [781, 957, 1013], палладия [1013], мышьяка [758] черных — серебра [504, 895], свинца [137, 139, 198, 442, 1064, 1154, 1424] ртути [1231]. Во многих случаях для стабилизации золей добавляют защитные коллоиды желатин, гуммиарабик, глицерин, поливиниловый спирт. Чаще всего фотометрируют золи серебра, висмута и свинца или сравнивают со стандартами окраску пятен на бумаге, импрегнированной солями этих элементов после обработки ее испытуемым раствором или газовой смесью, содержащей сероводород. [c.118]


    Для определения основного вещества можно использовать также фотометрическое титрование солями палладия(И) в сернокислой среде, учитывая, что со всеми реагентами палладий взаимодействует в соотношении 1 1, и образующийся комплекс устойчив уже при стехиометрическом соотношении компонентов. Для повышения растворимости реагентов и комплексов вводят органические растворители—диоксан, ацетон и ДМФА. [c.23]

    Определение палладия в сплавах с серебром [81, 206]. Экстракционно-фотометрическому определению палладия с использованием ПАР не мешают 10 -кратные количества ионов Со, Си, Ре(1П), 500-кратные кс. ичества Ag 50-кратные количества 1г(И1), Р1(1У), КЬ(1П). [c.154]

    Висмутол П — белые или желтоватые тонкие игольчатые кристаллы, ш = 250°С. Растворим в воде (2,6 г в 100 мл), ацетоне, горячем этаноле. Обладает восстановительными свойствами. Образует с теллуром при pH 2,3 (в присутствии ацетатного или монохлорацетатного буфера) комплекс желтого цвета, который может экстрагироваться бензолом. Применяют для фотометрического определения палладия, селена, теллура, висмута, таллия и мышьяка. [c.131]

    Для фотометрического определения никеля в виде диметилглиоксимата его экстрагируют хлороформом или другими органическими растворителями. Эти неводные растворы окрашены в желтый цвет. Аналогично определяют палладий. [c.303]

    Предложен фотометрический метод определения ртути с использованием 8-меркаптохинолина, образующего в сильнокислой среде (2—16 N Н2ЗО4 или 2—8 Ж HNOз) с Нд(П) желто-зеленый комплекс [3551. Окраска возникает мгновенно и устойчива 48 час. Чувствительность метода 0,5 мкг мл. Определению мешает только палладий. Метод применен для анализа руд и ртутьорганических соединений. Оптическую плотность измеряют нри 265 нм относительно 1,8 10" Л/раствора 8-меркаптохинолина в 4 Н2804. [c.118]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]

    В основу фотометрических методов определения палладия при помощи диоксимов положена способность диоксиматов палладия растворяться в органических растворителях. Измерения светопоглощения производят в ультрафиолетовой области. [c.166]

    Определение циркония в плутониево-урановых сплавах, содержащих продукты деления [370]. Ализарин S был использован для фотометрического определения циркония в плутониево-урановых сплавах, содержащих продукты деления Zr, Мо, Ru, Rh, Pd. Мешающие определению циркония плутоний и палладий отделяют методом ионообменной хроматографии, а рутений — выпариванием с хлорной кислотой. Молибден и родии не мешают. [c.135]

    Экстракцию палладия из иодидных растворов использовали для отделения его [вместе с Р1(1У)] от КЬ и 1г [930, 943, 945], фотометрического определения палладия в растворах [1223], опре- [c.208]

    Фотометрическое определение содержания палладия(11) в зоне. Окрашенную зону соединения палладия (П) вырезают, отступив от пятна на 3—5 мм. Бумагу с вырезанным пятном помещают в стакан вместимостью 50 мл, добавляют 4 мл ацетатного буферного раствора, 1—2 мл дистиллированной воды и 0,5 мл 0,5%-ного раствора п-нитрозодиме-тиланилина. Стакан накрывают часовым стеклом и нагревают [c.214]

    Азокраситель 2-сульфо-4-нитрофеиол (6-азо-2) - Г-р афтиламин-3,6-ди-сульфокислота предложен в качестве селективного реагента для фотометрического определения палладия. Реактив с выходом 80% получен азосочетаннем диазосоли, приготовленной из 2-амино-4-нит-рофенол-6-сульфокислоты, с избытком кислоты Фрейнда в кислой среде в присутствии пиридина. Краситель очищают многократным переосаждением. Библ, 2 назв. [c.246]

    Прииер 12.1. При экстракционно-фотометрическом определении палладия его экстрагировали в дихлорэтан в форме нитрон-иодидного комплекса при равенстве объемов водной и органической фаз. Рассчитать коэффициент распределения О и степень экстракции -й(%), если исходная концентрация Рс в водной фазе /(Рс12 ) = 2,5 мкг/смЗ концентрация РЙ в водной фазе после экстракции С(Рс1) = 0,020 мкг/см . [c.173]

    Диоксим 1,2-циклогептандиона представляет собой белое кристаллическое вещество (содержит одну молекулу кристаллизационной воды). Его растворимость в воде составляет 4,8 г на литр (0,031 моля) при 19,5°. Реагент применяется для гравиметрического и фотометрического определения никеля и палладия, (под названием гептоксима). [c.209]


    Особенностью палладия по сравнению с другими металлами платиновой группы является лабильность его аквакомплексов, а по сравнению с другими элементами периодической системы — способность взаимодействовать с гетероциклическими азосоединениями в кислой среде. По мнению авторов работы [518], ПАР является лучшим реагентом на палладий по совокупности оптических характеристик (АХ = 100 нм емр — еня > 10 eчR/eнR > Ю). Реагент образует с палладием два комплекса — в кислой и нейтральной средах. Экстракционно-фотометрическому определению палладия с использованием ПАР [629] при кислотности водной фазы ЗМ Н25О4 и при экстракции комплекса этилацетатом не мешают (в кратных количествах по отношению к 59,4 мкг палладия) Со, Си, Ре(1П), РЬ, 2п— 10 Pt(lV) — 2-10= Аи(1П), 1г(П1), 05(111), КЬ(1И), Ри(111) — 200. Фотометрическому определению палладия с помощью ПАР при pH 7,0 + 1,5 в присутствии ЭДТА и цитрата не мешают [629] (в кратных количествах) ш,елочные и щелочноземельные элементы — 2-10 А1, А5(1И, V), Ве, В1, Сс1, Се(111), Сг(111, VI), Оа, Нё(11), 1п, Ьа, Mg, Мп, Мс1, РЬ, Рг, КЬ, 5с, 5е, ТЬ, Т1(1, III), U(VI), V(IV), АУ, V, 2п -2-10" N1, 5п(IV) — [c.153]

    ПАР используют в качестве индикатора при фотометрическом титровании палладия фенантролином [516]. При pH 3,6 метод позволяет определять 1,1—2,3 мг/мл палладия. Используя ЭДТА в качестве маскирующего вещества для сопутствующих ионов, можно определять палладий в присутствии 10-кратных количеств Си, Ре(1П) и N1. Определению не мешает 1000-кратный избыток ЭДТА. [c.188]

    Определение с тиомочевиной Несколько большие количества висмута (от ОД до 4 мг) могут быть определены фотометрически в разбавленном азотнокислом растворе добавлением тиомочевины и измерением свето-ногдощения образовавшегося окрашенного в желтый цвет комплексного соединения при длине волны света 425 ммк. Сурьма, палладий, осмий и рутений также образуют с тиомочевиной в кислом растворе окрашенные комплексные соединения- . Добавление фтористоводородной кислоты предупреждает образование окрашенного соединения сурьмы серебро, ртуть, свинец, медь, кадмий и цинк образуют белые осадки, когда присутствуют в значительных количества если же содержание этих элементов невелико, то ни осадков, ни окрашивания раствора не получается. Железо, при содержании его, превышаюш ем 0,1 мг в 50 мл, должно быть удалено или восстановлено до двухвалентного состояния . Селен и теллур мешают определению [c.278]

    Эль Дбик Усама Халед. Амино- и оксиазосоединения с несколькими гетероатомами как реагенты для фотометрического и экстракционно-фотометрического определения палладия(И) Автореф. дис.. .. канд. хим. наук. М. МГУ, 1969. 12 с. [c.208]

    Ряд работ выполнен по применению 1-(2-пиридилазо)-2-наф-тола (ПАН) в качестве экстракционного реагента в фотометрическом анализе. Определены константы распределения ПАН между водой и четыреххлористым углеродом (Ю4), между водой и хлороформом (105 4), а также константы кислотной диссоциации реагента (10 п>2). Установлен состав экстрагирующихся комплексов ПАН с марганцем, медью и цинком [57] и другими элементами. Выявлена оптимальная область рН образования и экстракции комплексов марганца, кадмия, ртути (II), галлия, железа и иттрия, составляющая 5—9 7—10 6—7,5 3,6—5 4—8 и 8,5—11,0 соответственно. Изучены оптические свойства экстрактов. Разработаны методики определения железа, марганца и никеля при их совместном присутствии [58], иридия и родия [59], иттрия в присутствии лантана и церия [58]. Предложена методика определения палладия в титановых сплавах [60]. Изучено отношение комплексов ПАН с редкоземельными элементами к различным органическим растворителям [61]. Имеются работы по применению 1-(2-пиридилазо)-резорцина, а также других пиридиновых азо-красителей в качестве экстракционных реагентов [62, 63]. [c.136]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]

    Палладий, Фотометрическое определение НВг, ЗпВг2 Изоамиловый спирт Р1,, Rh 29 [c.228]

    Состав извлекаемых бензолом соединении кобальта с НН, а также с р-нитрозо-а-нафтолом выражается формулой СоКз, где R — остаток нитрозонафтола. Молярный коэффициент погашения комплекса кобальта с а-нптрозо-р-нафтолом в бензоле при 416 ммк равен 30000, а кобальта с р-нитрозо-а-нафтолом при 360 ммк, равен 44000. С помощью а-нитрозо-р-нафтола можно определить кобальт в присутствии 60-кратного количества никеля и 3000-кратного ко.личества железа, а с номощью р-нитро-зо-а-нафтола — в присутствии 400 частей никелеп и 500 частей железа. На основе полученных резу.льтатов разработан экстракционно-фотометрический метод определения кобальта в стали [224—226]. Аналогичный метод применен для определения кобальта в металлическом натрии [227]. Изучены условия экстракционно-фотометрического определения палладия и платины с [c.245]

    Таллий в присутствии иодида калия экстрагируют бензолом, хлороформом и другими органическими растворителями в виде соединений с диантипирилметаном и диантинирилпропилметаном. Максимум светопоглощения бензольных экстрактов находится при 400—4 05 ММК, молярный коэффициент погашения равен 12000. Предложена методика определения таллия этим методом [373]. Аналогичный вариант разработан для экстракционно-фотометрического определения палладия в хвостах никелевого производства. Палладий предварительно выделяют экстракцией хлороформом в виде диметилглпокспмата. Экстракт обрабатывают раствором иодида калия и диантипирилметана, а возникший при этом комплекс фотометрируют в хлороформе [374]. [c.254]

    Особенностью реагентов и образуемых ими комплексов с элементами является их сравнительно легкая экстрагируемость полярными растворителями, благодаря чему они пригодны для экстракционно-фотометрических схем определения элементов. С пиридилазорезорцином [43—46] описаны методы определения ниобия [35, 47], тантала [35, 36], кобальта [48], палладия [49. Пиридилазонафтол [50] применяется для определения отдельных редкоземельных элементов [51], индия, галлия, урана и ряда других элементов [52]. Есть очень обстоятельный обзор по аналитическому применению пиридиновых азосоединений [53]. [c.128]

    Фотометрическому определению меди при помощи димеркап-тотиопиронов не мешают многие элементы, причем некоторые из них в очень больших количествах. В табл. 2 приведены результаты определения меди реактивом ДМ. Мешают определению палладий, таллий, висмут. [c.91]

    Применение экстракции дает возможность проводить разделение и фотометрическое определение ряда металлов в виде диалкил-и диарилдитиофосфатов. Так, разработаны методы фотометрического определения молибдена в присутствии вольфрама [101, 105], палладия в присутствии платины и других металлов [106], меди [107—109], висмута [ПО] и никеля [103, 111, 112]. [c.329]

    Кроме описанных выше, имеется еще много других фотометрических методов определения йода. а-Нафтолфлавон реагирует с йодом с образованием синего соединения, которое пригодно для спектрофотометрических определений [81]. При взаимодействии йода с гидроксиламином образуется азотистая кислота, которая затем диазотирует сульфаниловую кислоту при последующем сочетании с а-нафтиламином образуется красный краситель [23]. о-Толидин, реагируя с йодом, дает сине-зеленую окраску [55]. Йодид можно определять по реакции с диоксаном [87]. В кислом растворе йодат окисляет пирогаллол до пурпурогаллина с образованием красновато-бурой окраски [103] эта реакция очень чувствительна. Можно использовать уменьшение флуоресценции флуоресцеина, поскольку дийодпроизводное не флуоресцирует [37]. Измерение интенсивности мути от йодида серебра позволяет успешно определять малые количества йодида [95]. Йод определяли также по адсорбции йодида одновалентной ртути на хлориде двухвалентной ртути [44, 77] и по образованию йодида палладия [64]. [c.243]

    Ниже приведено несколько примеров использования маскирования для увеличения избирательности. При экстракционно-фотометрическом определении молибдена с помощью толуол-3,4-ди-тиола мешающее влияние посторонних элементов устраняли тиомочевиной [455]. При экстракции ниобия и урана в виде диэтилдитиокарбаминатов переход циркония в органическую фазу предотвращали добавлением салициловой кислоты [456], Вводя в водную фазу до экстракции перекись водорода и винную кислоту, устраняли мешающее влияние 8п, V, Т1, Мо, при эксграк-ционно- фотометрическом определении железа с бензоилфениллшд-роксиламином [457]. ЭДТА использовали для маскирования Ре, Со, Си, Ш, Сг и других элементов, когда определяли палладий с 2-нитрозо-1-нафтолом [458] фторидом натрия связывали титан при извлечении ванадия с помощью БФГА [197, 459]. [c.158]

    Экстракция палладия из хлоридных растворов используется для решения прикладных задач различного рода. Описано несколько схем отделения палладия от неблагородных и платиновых металлов, которые могут быть использованы в технологических целях, в частности схемы противоточного разделения Pd и Pt с помощью ТБФ [928], Pd и Rh с помощью растворов ДАПМ [933], схема разделения Pd и Pt с помощью керосина, экстрагирующего палладий за счет имеющихся в нем серусодержащих соединений [1216]. Для извлечения палладия из сложных технологических растворов в работе [938] предложено использовать триалкилфос-финсульфиды. Циглер и Шредер [1215] предложили фотометрический метод определения малых количеств палладия в растворах, основанный на экстракции палладия в присутствии тиоксана. [c.207]

    Экстракцию палладия из бромидных растворов ТБФ использовали для разделения смесей этого элемента с другими платиноидами (Р1, КЬ, 1г) [940]. Экстракция палладия изоамиловым спиртом в присутствии ЗпВга используется при его фотометрическом определении [943]. Следует отметить, что оптическая плотность водных растворов и экстрактов очень чувствительна к концентрации кислоты и ЗпВгз, поэтому ее необходимо строго выдерживать. Окраска более устойчива, если экстракты получают в присутствии НСЮ4 [943]. [c.208]


Смотреть страницы где упоминается термин Палладий определение фотометрическое: [c.155]    [c.179]    [c.180]    [c.224]    [c.38]    [c.64]    [c.153]    [c.155]    [c.245]    [c.251]   
Гетероциклические азотосодержащие азосоединения (1982) -- [ c.154 ]

Гетероциклические азотосодержащие азосоединения (1982) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Димеркапто тиодиазол висмутиол II фотометрическое определение палладия

Димеркапто фенил тиодиазол фотометрическое определение палладия

Диоксим циклогександиона ниоксим фотометрическое определение палладия

Меркапто диметилтиазол фотометрическое определение палладия

Меркаптохинолин, фотометрическое определение палладия

Нафтиламид тиогликолевой кислоты фотометрическое определение палладия

Нитрозонафтолы фотометрическое определение палладия

Палладий

Палладий палладий

Тиазолилазо нафтол фотометрическое определение палладия

Тиоглицерин, фотометрическое определение палладия



© 2024 chem21.info Реклама на сайте