Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение внутренней благородных газов

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]


    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]

    Термодинамические характеристики адсорбции благородных газов при малых (нулевых) заполнениях были приведены в табл. 111,2 и даны также в табл. П, 2 Приложения. Константа Генри Кх я величина дифференциального изменения внутренней энергии адсорб- [c.183]

    Явно выраженная периодичность характерна для энтальпий атомизации простых веществ (рис. 123). Для элементов малых периодов кривая зависимости энтальпии атомизации от атомного номера проходит через четко выраженный максимум, приходящийся на элементы 1УА-группы (алмаз, кремний). Это обусловлено, с одной стороны, упрочнением связей в кристаллах по мере увеличения числа валентных электронов от одного до четырех, а с другой — уменьшением прочности кристаллической решетки за счет уменьшения координационного числа ковалентных структур по правилу 8 — N после 1УА-группы. Минимумы на кривой соответствуют кристаллам благородных газов, образованным за счет слабых сил межмолекулярного взаимодействия. В больших периодах для -и р-элементов (главные подгруппы) эта закономерность также просматривается. Однако на нее накладывается изменение энтальпий в рядах переходных металлов. При этом для металлов первой вставной декады, обладающих кайносимметричными 3 -электронами, наблюдается четко выраженная внутренняя периодичность, обусловленная особой стабильностью и (Л -конфигураций и меньшей способностью электронов в этом состоянии к валентному взаимодействию. Именно по этой причине кристаллические структуры марганца (3< 4я2) и цинка (3(/ 452) менее прочны. Эта тенденция менее ярко выражена у остальных -элементов, особенно в середине вставных декад, где более явно проявляется горизонтальная аналогия. Тем не менее, для простых веществ, замыкающих -ряды (Сс1, Hg), отмечаются минимумы энтальпии атомизации. Принципиально важным является то, что в главных подгруппах максимальное значение энтальпии атомизации в ряду С — 81 — Се — 8п — РЬ уменьшается, а для -элементов — возрастает в направлении 3 — 4 — 5 . Первый факт обусловлен ростом доли металличе- [c.246]


    Смысл равенства состоит в том, что наблюдаемые изотопные эффекты целиком определяются различием структурного состояния протонирован-ной и дейтерированной воды и структурных изменений, производимых в них атомами благородных газов. Рассматривая в таком аспекте данные табл. 6 и 7, нетрудно заметить четкую качественную корреляцию этих результатов с современными представлениями о механизме образования и природе растворов неполярных газов в жидкостях с различными химической природой и внутренним строением. [c.124]

    Поскольку изменение внутренней энергии системы в процессе растворения должно включать энергию взаимодействия атомов благородных газов с молекулами растворителя и энергию активации диффузии, входящими с противоположными знаками, мы. проанализировали разницу этих величин ([ акт.д — 1 г р ) ДЛЯ каждого газа и растворителя (табл. 4). Из табл. 4 видно, что значения ( акт.д1 — г-р ) для всех благородных газов за исключением гелия в одном и том же растворителе практически постоянны и отклонение от среднего не превышает 3,5%. Это естественно, так как с ростом массы атома возрастает энергия взаимодействия (в связи с ростом поляризуемости), но затрудняется диф- [c.92]

    Общая характеристика. Внешняя электронная конфигурация атомов лантаноидов может быть представлена формулой 4/"5s 5p 5d 6s где п изменяется от О до 14, а т может принимать только два значения О и 1-. Для описания электронной конфигурации лантаноида достаточно указать лишь число 4/- и 5 -электронов, число же остальных электронов остается без изменения. Электронные подуровни 4/ и Ьё, довольно близки гю энергии и при известных условиях может происходить взаимный переход электронов. Основная степень окисления +3 в редкоземельном ряду осуществляется за счет двух электронов б5, одного 5й для 0с1 и Ьи и одного 4/-элект-рона для остальных лантаноидов. Значительно реже некоторые из них могут проявлять степени окисления +2 и +4. При этом наблюдается внутренняя периодичность в изменении степеней окисления (см. 4.4). В целом у атомов лантаноидов с увеличением порядкового номера проявляется общая тенденция, состоящая в замене конфигураций типа 4/ 5d конфигурациями типа 4/ 5й . Для последних членов ряда лантаноидов большая прочность связи 4/- по сравнению с 5й -эл8ктронами проявляется особенно отчетливо. У ионизированных атомов тенденция эта проявляется сильнее, чем у нейтральных атомов. Все лантаноиды образуют устойчивые ионы Э " , однако шесть из них могут проявлять и другие степени окисления +4 (Се, Рг, ТЬ) и +2 (5т, Ей, УЬ). Электронные конфигурации ионов можно представить общей формулой 4/"55 5р . Электроны 5s 5/7 экранируют 4/-электроны от влияния внешних полей, поэтому поведение ионов лантаноидов во многих отношениях напоминает поведение других ионов с внешней оболочкой благородных газов. [c.358]

    Явно выраженная периодичность характерна для энтальпий атомизации простых веществ (рнс. 6). Для элементов малых периодов кривая зависимости энтальпии атомизации от атомного номера нроходит через четко выраженный максимум, приходящийся на элементы IУА-группы (Сал , 31). Это обусловлено, с одной стороны, упрочнением связей в кристаллах по мере увеличения числа валентных электронов от одного до четырех, а с другой — уменьшением прочности кристаллической решетки за счет уменьшения координационного числа ковалентных структур по правилу 8—N после 1УА-группы. Минимумы на кривой соответствуют кристаллам благородных газов, образованным за счет слабых сил межмолекулярного взаимодействия. В больших периодах для 5- и р-элементов (главные подгруппы) эта закономерность также просматривается. Однако на нее накладывается изменение энтальпий в рядах переходных металлов. При этом для металлов первой вставной декады, обладающих кайносимметричными Зй-электронами, наблюдается четко выраженная внутренняя периодичность, обусловленная осо- [c.34]

    Расчеты термодинамических характеристик адсорбции благородных газов на базисной грани графита в классическом приближении производились при использовании статистических выражений (VII,44)—(VII,48), (VII,51). Квантовомеханические поправки оценивались согласно приближению Птицера — Гвина (VII,66) но формулам (VII,67)—(VII,72). На рис. IX,2 и IX,3 рассчитанные зависимости логарифма константы Генри 1н Ki и изменения при адсорбции внутренней энергии AUi сопоставлены с эксперименталь ными значениями, полученными в разных работах [1, 9, 38—44]. Сплошные кривые на этих рисунках рассчитаны при использовании параметров атом-атомных потенциальных функций межмолекулярного взаимодействия, оцененных из свойств благородных газов и гра- [c.293]

    Выше рассматривались закономерности изменения электронного строения атомов с увеличением атомного номера в рамках отдельных периодов (отвечающих рядам Д. И, Менделеева), которые позволили показать суть главной и внутренней периодичности. Е то же время в своей Системе Д. РТ. Менделеев объединял элементы в группы элементов-аналогов (см. рис. 1). Всего он выделял девять групп, начиная с пулевой, к которой относил благородные газы — Не, Хе, Аг, Кг и Хе, и кончая восьмо11, к которой относил триады Ре, Со, N1 Вп, ВЬ, Рс1 08, 1г, РЬ. [c.17]


    Теория айсбергов впервые выдвинута Или [1] при изучении аномалий в теплотах растворения и энтропии растворения в воде газов с неполярными молекулами (благородных газов, углеводородов и т. д.). Теплота растворения (энтальпия, взятая с обратным знаком) этих слаборастворимых веществ в случае воды гораздо больще, чем в случае нормальных органических растворителей. Энтропия растворения по абсолютной величине также больше в случае воды, чем для нормальных органических растворителей (разница составляет около 12 ед. Клаузиуса). Так, для метана АЯ°= =3,19 ккал/моль, А5°=—31,8 ед. Клаузиуса/моль. По данным Или [1], для растворения молекул газа нет необходимости в предварительном образовании структурных нустот (что потребовало бы затраты значительного количества энергии), поскольку в рыхлой структуре жидкой воды уже имеется достаточное число таких пустот, пригодных для размещения молекул газа. Если размеры молекул газа оказываются больше, чем размеры пустот, то пустоты могут увеличиться при относительно небольшой затрате энергии. Энергия, необходимая для разрыва водородных связей, сопровождающего этот процесс, компенсируется за счет энергии, выделяющейся при образовании новых водородных связей между молекулами, окружающими структурные пустоты. Согласно этой теории, неполярные молекулы газа могут занимать до 2% внутренних структурных пустот. Результаты вычисления изменений энтропии при растворении хорошо согласуются с экспериментальными данными [2]. Однако большое уменьшение энтропии, так же как и малая растворимость газов, не согласуется с предположением о независимости коэффициента активности растворенных газов от концентрации. [c.73]

    Молекулярно-статистический расчет термодинамических характеристик удерживания цеолитами. Такие расчеты производились Киселевым, Лопаткиным и их сотрудниками пока только для молекул благородных газов [179, 180], некоторых алканов [179, 181—183а], азота и двуокиси углерода [184], цикланов и этилена. Строение пористых кристаллов цеолитов много сложнее строения атомного кристалла графита, поэтому расчеты потенциальной функции межмолекулярного взаимодействия и конфигурационных интегралов в случае цеолитов много сложнее. Наиболее детально модель молекула — цеолит X и была разработана в работах [180, 183]. В работе [180] потенциальную энергию взаимодействия молекул благородных газов с решеткой пористого кристалла цеолита NaX определяли во многих точках внутри полости цеолита при перемещении молекулы благородного газа от центра полости к ее стенке. Далее проводили числовое интегрирование полученных потенциальных кривых, необходимое для расчета термодинамических характеристик межмолекулярного взаимодействия молекул с решеткой цеолита методами молекулярной статистики. По рассчитанным таким путем конфигурационным интегралам определяли величины Ут, (константы Генри в расчете на 1 г цеолита), а также дифференциальные мольные изменения внутренней энергии и теплоемкости адсорбированного вещества для малого (нулевого) заполнения цеолита при разных температурах. [c.89]


Смотреть страницы где упоминается термин Изменение внутренней благородных газов: [c.400]    [c.183]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.293 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Газ благородные

Газы благородные



© 2024 chem21.info Реклама на сайте