Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нормальные органические соединени

    На рис. 24.2 для каждого структурного изомера алканов приведены два названия первое из них представляет собой так называемое тривиальное название. Изомер с не-разветвленной углеродной цепочкой считается нормальным изомером, что сокращенно обозначается буквенной приставкой н-. Изомер, в котором от главной цепочки ответвляется одна группа СН3, обозначается приставкой изо-, например изобутан. Однако при возрастании числа изомеров невозможно подобрать приставки для обозначения каждого изомера. Уже на довольно раннем этапе развития органической химии стала ясна необходимость создания систематической системы наименований органических соединений. В 1892 г. на съезде Международного союза химиков в Женеве бы.гти сформулированы первые правила систематической номенклатуры органических веществ. С этого времени задача составления правил наименования всех появляющихся соединений возложена на Международный союз чистой и прикладной химии (ИЮПАК). Интересно отметить, что работа ИЮПАК не прерывалась даже во времена двух опустошительных мировых войн и крупных социальных потрясений. Химики всего мира независимо от своей национальной или политической принадлежности пользуются единой системой наименования соединений. [c.411]


    В тех случаях, когда давление технологического лара на установке недостаточно, применяют конденсат, который после пароперегревателя вводят в поток сырья. Место ввода турбу-лизатора определяется главным образом химическим составом сырья, поступающего на нагрев, и его реакционной способностью. Наименьшей термической прочностью, как было показано выше, обладают углеводороды алифатического строения, к которым в первую очередь следует отнести парафины нормального и изостроения, затем длинные алифатические цепочки в молекулах нафтеновых и ароматических органических соединений сложного гибридного строения. [c.98]

    В масляных дистиллятах и остатках, получаемых при вакуумной перегонке мазута, содержатся парафиновые углеводороды (нормального и изостроения) нафтеновые углеводороды, содержащие пяти- и шестичленные кольца с парафиновыми цепями разной длины ароматические углеводороды (моно- и полициклические), а также нафтено-ароматические с парафиновыми цепями смолисто-асфальтеновые вещества серо-, кислород- и азотсодержащие органические соединения. [c.38]

    В данной работе для выделения нормальных парафиновых углеводородов мы пользовались мочевиной. Способность последней давать кристаллические продукты взаимодействия с нормальными парафиновыми углеводородами и другими органическими соединениями, обладающими нормальной угле- [c.103]

    При применении биохимического метода большое значение имеет состав воды, природа соединений и их концентрация, наличие в воде биогенных элементов (азота, фосфора, калия, железа) и растворенного кислорода, а также pH и температура. Концентрация органических соединений, находящихся в сточных водах, подаваемых на биохимические очистные сооружения, не превышает 1—2 г/л. Многие из соединений, присутствующих в стоках, могут в той или иной степени нарушать нормальную жизнедеятельность микроорганизмов, поэтому концентрация их не должна превышать допустимых величин (МКб, МКв. о. с). [c.496]

    Совокупность экспериментальных данных о термодинамических свойствах растворов органических соединений свидетельствуют о том, что изменения свойств воды вокруг органических молекул и их отдельных атомных групп затрагивают одну или, как максимум, две координационные сферы. Это заключение справедливо как для заряженных, так и для полярных и гидрофобных молекул и атомных групп. Свойства воды в пределах этого объема (гидратной оболочки) существенным образом зависят от типа атомной группы. Наиболее сильные изменения свойств воды наблюдаются в гидратных оболочках заряженных атомных групп. При этом происходит полная потеря присущих объемной воде аномальных свойств, таких, как немонотонные и нелинейные температурные зависимости плотности и сжимаемости, наличие большого структурного вклада в сжимаемость и др. В гидратной оболочке сближенных полярных атомных групп свойства воды также приближаются к свойствам нормальных жидкостей, однако в отличие от заряженных атомных групп эффект нормализации выражен гораздо слабее. Наименьшее воздействие на воду оказывают одиночные полярные группы, свойства воды в гидратной оболочке этих групп близки к свойствам чистой воды. Характеристики гидратных оболочек гидрофобных атомных групп значительно отличаются [c.62]


    Общей закономерностью фрагментации органических соединений оказывается снижение интенсивностей пиков при переходе к более тяжелым гомологам. Это связано с увеличением числа возможных направлений распада и легкостью отщепления тяжелых углеводородных радикалов. Соединения, содержащие разветвленные углеводородные радикалы, обычно дают менее интенсивные пики М -, чем изомеры нормального строения. [c.177]

    Очень близкие по своей физической сущности идеи высказывались и раньше. Так, Абрамзон и Славин [30] показали, что меж-молекулярные связи между органическими соединениями и растворителями с симметричными силовыми полями обладают свойством аддитивности по входящим в молекулу группам. На этом основана шкала межмолекулярных связей между молекулами органических соединений, разработанная авторами [30]. Изучая взаимодействие алифатических спиртов и углеводородов, Абрамзон и Славин показали [31], что свободная энергия растворения любых алифатических углеводородов нормального строения в данном спирте, отнесенная к одной группе СН2, одинакова. [c.93]

    Описаны и другие упрощенные методы. Все они едва ли имеют большое значение для определения теплот образования или теплот, сгорания алканов при наличии более точных и не слишком слож- ных методов расчета. Однако при переходе к непредельным угле- водородам и другим классам органических соединений более точные методы сильно усложняются и требуют большего числа исходных данных. Несмотря на отдельные более или менее успешные разработки путей расчета свойств некоторых групп непредельных углеводородов и нормальных первичных спиртов, распространение этих методов на другие классы соединений до сих пор встречает серьезные затруднения. Это объясняется не только увеличением числа видов связи, но и влиянием кратных и полярных связей с кислородным атомом на соседние связи, вследствие чего учет состояния только ближнего окружения становится недостаточным, в этих условиях приобретает практическое значение разработка упрощенных методов. [c.255]

    Сравнительные методы расчета недостающих значений наиболее полно разработаны для алканов (нормальных и изомерных). Для нормальных алканов в табл. VII, 28 приведены инкременты группы СНг для ЛЯ , ода и различных Д5 (отсюда легко рассчитать соответствующие инкременты других параметров). Данные, приведенные в табл. IV, 4, показывают, что для АЯо, гэа указанные инкременты группы СНг относятся не только к алканам. По-видимому, и для других рядов углеводородов и других классов органических соединений характерна подобная закономерность, причем даже для спиртов значение этого инкремента почти не изменяется. [c.306]

    По Женевской номенклатуре (стр. 283) основой (корнем) названия органического соединения является название нормального углеводорода, содержащего то же число атомов углерода, что и наиболее длинная углеродная цепь в называемом соединении. Приставки (префиксы) и окончания (суффиксы) показывают наличие в этой главной цели боковых цепей (углеводородных радикалов), функциональных групп, нефункциональных заместителей и кратных связей при этом цифрами обозначают положение боковых цепей, групп или кратных связей в главной углеродной цепи, а греческими (иногда латинскими) числительными — число одинаковых замещающих групп или кратных связей .  [c.271]

    При синтезах под давлением (стр. 695, 708, 715) обычно получаются конденсаты, состоящие из углеводородов и кислородсодержащих органических соединений с преобладанием спиртов нормального или изостроения. Так, например, при синтезах над нитридными железными катализаторами получаемый конденсат состоит на 60% из различных органических кислородных производных из них 34% приходится на нормальные первичные спирты, среди которых превалирует этанол. [c.689]

    Для многих гомологических рядов органических соединений величины инкремента на группу СНг оказались такими же, какими они были найдены для алканов. Так, гомологическая разность в теплотах сгорания монокарбоновых жирных кислот нормального строения в жидком состоянии равна 156,3 ккал/моль. В работе Грина (12] было показано, что для первичных спиртов нормального [c.28]

    Применение. Более 90% всех органических соединений получают путем переработки углеводородов нефти. Очень важная область применения нефти — получение смеси белков. Так, для получения кормового белка используют парафины нормального строения, которых в нефти в среднем до 20%, полное их использование позволяет получать до 250 млн. т белка в год. [c.214]

    Неионогенные поверхностно-активные вещества (неэлектролиты) — это органические соединения с полярными молекулами, имеющими гидрофильные и гидрофобные группы. Первые представляют собой, как правило, кислотный остаток и легко гидрируются, а вторые состоят из углеродной цепи (главным образом нормального строения) с различными функциональными группами и радикалами. В качестве неэлектролитных коагулянтов рекомендуются [26] также неионогенные поверхностно-активные вещества, как, например, октадецил-амид оксимасляной кислоты. [c.119]


    Поэтому обычная структурная формула органического соединения, например формула нормального пентана [c.200]

    Номенклатура органических соединений. Систематическая номенклатура органических соединений исходит из строения молекулярного скелета соединений. Названия соединений составляются из корня и приставок (суффиксов). В на 5ваниях предельных углеводородов используется приставка ан, непредельных с одной двойной связью — ен, непредельных с двумя двойными связями — диен, непредельных с тройной СВЯЗ11Ю — ин. Корни наименований в зависимости от числа углеродных атомов в скелете образуются ИЗ греческих числительных С5 — пент, Се — гекс, С — гет, Са — окт и т. д., первые четыре предельные углеводорода с нормальной (не разветвленной) цепью имеют эмпирические названия С — метан, С2 — этан, С3 —пропан, С4 — бутан. В названиях алициклических углеводородов перед корнем ставится приставка цикло , а после корня — соответствующие суффиксы ан, ен, диен. Названия соединений, содержащих различные функциональные группы, составляются из названия углеводорода, произ- [c.143]

    Сероводород — бесцветный газ с неприятным запахом (тухлых яиц). I л его при нормальных условиях весит 1,54 г. Образуется при разложении органических веществ без доступа воздуха, за счет серы, входящей в состав белков и других органических соединений (в частности, выделяется при порче яиц). Сероводород ядовит. Вдыхание значительных количеств его опасно (может вызвать смерть). [c.503]

    Представление, что катализаторы действуют через образование промежуточных веществ, уже довольно старое. В конечном счете оно восходит к Генри (1835 г.). Но лищь значи тельно позднее пришли к давно напрашивавшейся гипотезе, что нормальные органические соединения, образованные основной валентностью, также могут реагировать как промежуточные вещества. Прежде, однако, действие фермента всегда представляли себе таким образом, что фермент непрочно присоединяется к субстрату и снова отходит от него по окончании реакции. Теперь мы можем предположить более глубокое обоснова-ние этой замечательной гипотезы. Считали, что гладкое регенерирование катализатора можно объяснить не иначе, как слабым сродством между катализатором и субстратом. Но это неверное мнение, так как в действительности катализатор регенерируется вовсе не из соединения катализатор — субстрат, а из соединения катализатор — продукт реакции, как это показывает следующая простейшая схема мономолекулярного превращения  [c.15]

    В нашей работе для выделения нормальных парафиновых углеводородов мы пользовались мочевиной. Способность мочевины давать кристаллические продукты взаимодействия с нормальными парафиновыми углеводородами и другими органическими соединениями, об.тадающими нор.мальной углеродной цепью, открыта Ф. Бенгеном [13]. Это открытие Ф. Бенгена послужило в дальнейшем объектом исследования ряда авторов [14, 15], [c.108]

    Принципиальная схема мембранной установки с рулюнными элементами Сепарекс для выделения водорода из продувочных газов синтеза изобутана [41, 44] изображена на рис. 8.9. В процессе, названном Бутамер , нормальный бутан в блоке синтеза подвергают каталитической изомеризации (в среде водорода с добавлением органических соединений хлора) с получением изобутана. Одновременно с целевым продуктом образуются пары H I. Поэтому продувочные газы перед подачей на /мембранную установку подвергают щелочной очистке от НС1. Пермеат, обогащенный водородом, после компримирования возвращают в блок синтеза, а ретант после выделения углеводородов Сз—Сп в качестве топливного газа отправляют на сжигание. Результаты испытаний [41] представлены в табл. 8.6. [c.284]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Однотипными органическими соединениями являются, строго говоря, лишь такие, которые аналогичны по составу и строению и различаются лишь одним элементом, например СНзС1 и СНаВг или С2Н5ОН и СаНбЗН. Однако закономерности свойств, характерные для однотипных соединеиий, обычно в большей или меньшей степени применимы и к различным членам одного гомологического ряда, обладающим аналогичным строением (кроме первых членов данного гомологического ряда, так как для них различия в строении обычно сравнительно больше). Поэтому аналогичные реакции разных членов данного гомологического ряда, обладающих аналогичным строением, можно рассматривать тоже как однотипные реакции, кроме реакций относящихся к первым членам ряда (и кроме реакций образования соединеннй из простых веществ или сгорания, так как эти реакции различаются по стехиометрическим коэффициентам). Так, однотипными можно считать, например, реакции гидрогенизации 1-ал-кенов нормального строения [c.291]

    Опубликовано значительное число работ, в которых определялись основные термодинамические функции отдельных кислородных органических соединений, а также соединений, содержащих галогены или азот. Многие из них приведены в указанных выще книгах А. А. Введенского и Н. В. Лаврова, В. В. Коробова и В. И. Филипповой , в таблицах Ландольта — Бернштейнаи в справочнике под редакцией В. П. Глушко . Из результатов, не вошедших в эти издания, можно назвать данные, полученные Грином по определению свойств нормальных первичных алкоголей до С12 включительно для температур от 298 до 1000 К и критическую сводку данных о .H° и А(7 различных кислородных органических соединений при 298,15 К. [c.81]

    В ре зультате реакции окисления могут образовываться малоустойчивые соединения, являющиеся источниками радикалов, которые в дальнейшем ускоряют эту реакцию. Поэтому при бесконтрольном течении процесса может получиться сложная смесь органических соединений (сложные эфиры, оксикислоты, различные MOHO- и дикарбоновые кислоты и т. д.) и даже продукты горения с образованием двуокиси углерода и воды. Учитывая это, процесс окисления высших алканов проводят при температуре около 150°С в присутствии солей марганца (катализатор). При этом можно добиться получения только одного определенного продукта (с небольшими примесями). Например, при каталитическом окислении высших парафинов нормального строения ( 12 — С25) получают высшие л ирные кислоты (ВЖК) и высшие жирные спирты (ВЖС), представляющие собой весьма ценные продукты, применяемые для производства поверхностно-активных веществ (ПАВ). [c.54]

    За последнее время появились обзоры и монографии [77, 78], в которых с достаточной полнотой освещены теоретические основы метода комплексообразования парафинов с карбамидом. Поэтому здесь рассматриваются лишь некоторые из основных положений о природе кристаллических комплексов углеводородов с карбамидом и тиокарбамидом и методах их получения. Рентгеновские исследования кристаллических комплексов парафиновых углеводородов с карбамидом позволили в известной степени пролить свет на строение этих весьма интересных соединений. В присутствии парафиновых углеводородов нормального строения или других органических соединений, имеющих неразветвленную углеродную цепь из восьми и более атомов углерода, молекулы карбамида складываются в спираль за счет водородных связей между кислородом карбонильной гдалпы и аминогруппой соседних молекул. В результате из молекул карбамида образуется сплошная спираль, внутри которой находится [c.61]

    Основой процесса карбамидной депарафинизации является образование комплекса, состоящего из молекул карбамида (мочевины) и молекул углеводорода с неразветвленной цепью или другого органического соединения с достаточно длинной нормальной парафиновой ценью. [c.7]

    Первоначально было всесторонне изучено комнлексообразо-вание нормальных нарафиновых углеводородов. Установлено, что в карбамидный комплекс могут вовлекаться и другие органические соединения, имеющие длинные неразветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моно-галоидные производные нормальных парафиновых углеводородов и др. Вступают в реакцию комплексообразования ароматические и нафтеновые соединения с длинными парафиновыми цепями. Установлено также, что кроме карбамида образовывать комплексы с углеводородами различных классов могут тиокарбамид, селен-карбамид и теллур-карбамид [6]. Однако практического применения эти соединения не получили. [c.8]

    Свойство карбамида образовывать комплексы с органическими соединениями, имеющими в молекуле длинную углеводородную неразветвлепную цепочку, используют в исследовательских работах, в лабораторной практике и в нро Мышленности. При этом наибольшее практическое применение образование карбамидного комплекса нашло в нефтеперерабатывающей промышленности, поскольку этот метод позволяет выделять из раз личных нефтяных фракций парафиновые углеводороды нормального строений и слаборазветвлепные при этом улучшается качество многих товарных нефтепродуктов. Кроме того, при помощи процесса карбамидной депарафинизации можно получать смесь нормальных парафиновых углеводородов (в виде жидкого или твердого парафина), служащую сырьем для производства синтетических жир- [c.8]

    Считалось, что дегидроциклизации подвергаются лишь те алифатические углеводороды, которые содержат в нормальной цепи не менее 6 атомов углерода. Впоследствии работами Е. Герингтона и Е. Рейдила [28] было, однако, установлено, что дегндроциклизации подвергаются и изомерные гептаны и октаны, имеющие в основной иепи 5 атомов углерода. Над катализатором АиОз/Сг. Оз при 475° они дают значительные выходы ароматических углеводородов. На этом основании можно сде/ ать вывод, что механизм дегидроциклизации очень сложен и сопряжен с изомеризациями, ведущими к лревращению органических соединений в более термодинамически устойчивые ароматические циклы  [c.275]

    Кроме того, свойства углеводородов определяются не только длиной цепи, но и ее формой. Так, изомеры с разветвленной структурой кипят при более низкой температуре. Объясняется это большей компактностью молекул с разветвленной структурой, а это приводит к меньшему взаимодействию между молекулами. Например, длинные молекулы н-бутана располагаются так, что для межмолекулярного притяжения представляется большая возможность, чем у почти сферических молекуч изобутана. Как следствие - более высокие температуры плавления кипения у нормальных структур. Подобные закономерности наблюда ются и у других классов органических соединений. [c.35]

    Витаминами называют вещества, очень малые дозы которых, наряду с жирами, белками, углеводами и минеральными веществами, необходимы для нормального развития животного организма недостаток витаминов приводит к болезненным явлениям, так называемому авитаминозу. Одкако приведенное определение витаминов требует известного уточнения. Существует много веществ, без которых животный организм не может нормально развиваться среди них встречаются и такие вещества, которые требуются организму в небольших количествах, но которые все же не считаются витаминами, например триптофан или иод. Под витаминами подразу.меаают некоторые сравнительно неустойчивые органические соединения относительно сложного строения, безусловно необходимые животному организму. Животный организм часто неспособен синтезировать их из простых соединений они попадают в животный организм с растительной пищей или образуются в нем в результате превращений довольно сложных соединений растительного происхождения. [c.890]

    Определенные выводы о реакционной способности органических соединений можно сделать на основанин сопоставления величин иоргизадионных потенциалов молекулярных ионов. Наиболее трудно ионизируются винилацетилен (9,9 в) и изопропенилацетилен (10,1 в). Удлинение нормальной цепи углеводорода со стороны тройной связи ведет к снижению потенциала ионизации до 9,4 в (винилметилацетилен), а со стороны двойной — до 8,5 в (пропенилацетилен). Таким образом, потенциалы ионизации молекулярных ионов существенно различаются в зависимости от положения метильной группы. Эти данные интересно было бы сопоставить с [c.69]

    Номенклатура. При громадном числе органических соединений чрезвычайно важно установить единые правила составления их названий (номенклатуры). Наиболее последовательной и строгой является современная научная номенклатура органических соединений, предложенная Международным Союзом теоретической и прикладной химии ШРАС. В основу этой номенклатуры органических соединений взяты названия предельных углеводородов нормального строения. Характерным в названии предельных углеводородов является суффикс -ан. Наименования первых четырех членов ряда предельных углеводородов сложились традиционно метан, этан, пропан, бутан. Названия следующих углеводородов этого ряда образуются из названий греческих чисел и суффикса ан С Нц — пентан, СвН14 — гексан С,Н1в — гептан и т. д. [c.122]


Смотреть страницы где упоминается термин Нормальные органические соединени: [c.11]    [c.119]    [c.91]    [c.310]    [c.116]    [c.267]    [c.133]    [c.72]    [c.214]    [c.33]    [c.252]    [c.527]    [c.357]    [c.357]   
Справочник Химия изд.2 (2000) -- [ c.441 , c.608 ]




ПОИСК







© 2024 chem21.info Реклама на сайте