Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны атака ядра

    Реакции альдегидов и кетонов с ароматическими соединениями имею г много сходства с процессами алкилирования и тоже принадлежа к реакциям электрофильного замещения. Обычными катализаторами являются протонные кислоты (серная, сульфокислоты, хлористый водород, катионообменные смолы), которые переводят карбонильные соединения в положительно заряженный ион, атакующий далее ароматическое ядро через промежуточное образование л- и а-комплексов  [c.549]


    Действие магнийорганических соединений на кетоны с большим пространственным заполнением вызывает скорее восстановление группы СО (см. стр. 340), а не реакции конденсации. Эта особенность становится тем более заметной, если в структуре самого металлоорганического соединения также сказывается экранирующее действие (б). Нормальное протекание реакции можно облегчить, применяя литиевые производные. В случае ароматических кетонов экранирование карбонильной группы способствует иногда направлению атаки на ядро (в). [c.423]

    Одним из характерных химических свойств хинонов является их склонность к реакциям присоединения . Типичное для хинонов присоединение нуклеофильных агентов к атомам углерода можно рассматривать как присоединение к сопряженной цепи, включающей группу СО и С=С-связи хиноидного ядра. В этом отношении хиноны подобны а,Р-ненасыщенным кетонам и их винилогам. Своеобразие присоединения к хинонам состоит во вторичных превращениях, обусловленных тенденцией к ароматизации. Первоначально образующиеся при нуклеофильной атаке продукты присоединения стабилизируются далее путем отщепления вытесняемой группы в виде аниона (нуклеофильное замещение) или путем прототропного перехода в замещенный гидрохинон. Последний является конечным продуктом реакции, если вступающая группа обладает электроноакцепторными свойствами и повышает окислительно-восстановительный потенциал системы хинон — гидрохинон. В тех случаях, когда заместитель имеет электронодонорный характер, происходит дальнейшее окисление частью исходного хинона, восстанавливающего в гидрохинон. Применение дополнительного окислителя позволяет регенерировать исходное вещество и довести процесс до полного превращения в замещенный хинон. Конечный результат при этом состоит в замене атома водорода в молекуле хинона и часто интерпретируется как нуклеофильное замещение с удалением гидрид-иона, облегчаемое участием окислителя Поскольку механизм, допускающий гид-ридное перемещение, в данном случае не доказан, вопрос о том, рассматривать ли вторичное превращение продукта присоединения в замещенный хинон как перенос электронов с последующим переходом протона или как отщепление гидрид-иона, сопровождающееся его окислением, остается открытым. [c.5]

    Приведенный на схеме (75) метод синтеза флаванонов подобен главному методу синтеза пирилиевого ядра антоцианинов (см. разд. 18.1.4.3). Оба гетероцикла образуются циклизацией с участием остатка а,р-непредельного кетона и фенольной гидроксигруппы (схема 76) если эта гидроксигруппа расположена так, что она атакует карбонильную группу, то образуется пирилиевая соль, а если гидроксигруппа находится в другом арильном кольце, то происходит присоединение по Михаэлю с образованием флаванона. Таким образом, положение свободной о-гидроксигруппы является определяющим фактором многих синтетических подходов к флавоноидам. К счастью для химиков-синтетиков, в природных флаво-ноидах кольцо В образуется преимущественно из коричной кислоты, а не из ацетата, и поэтому очень редко имеет гидроксигруппу рядом с гетероциклом [см. формулу (104) и схему [67)], т. е. в положении, которое могло бы быть причиной неопределенности при синтезе. [c.111]


    Электронные свойства циклической системы фурана оказывают влияние на реакционную способность заместителей в положении 2. Фурановое ядро - акцептор т-электроиов и донор т-электронов. т-Электронодонорные свойства кольца оказывают такое же влияние на заместители, как и в аналогичных пирролах стабильны катионы, имеющие заряд на а-углеродном атоме, а нуклеофильная атака по карбонильной группе фуран-2-карбоксальдегидов и 2-Фурилкетонов замедлена по сравнению с таковой для алифатических альдегидов и кетонов. 2-(Хлорометил)фуран нестабилен и [c.255]

    Некоторые функциональные группы можно удалить из ароматического ядра отщеплением посредством кислоты. Наиболее важный пример — это уже рассмотренный гидролиз ароматических сульфокислот. Арилкарбоно-вые кислоты и арилкетоны с двумя алкилами в орто-положении к функциональной группе расщепляются концентрированными кислотами. Кислоты и кетоны с меньшими пространственными затруднениями так не реагируют. Полагают, что пространственные затруднения выводят карбонил из плоскости ароматического кольца, препятствуя нормальному взаимодействию обоих. Расщепление происходит легко, так как электрофильная атака не требует такой потери энергии резонанса, как в случае незатрудненной карбонильной группы. [c.373]

    Общие реакции ароматических кетонов сходны с реакциями алифатических кетонов, за исключением того, что ароматическое ядро, как и в ароматических альдегидах, уменьшает дефицит электронов на карбонильном углеродном атоме, в результате чего карбонильная группа становится гораздо менее чувствительной к нуклеофильной атаке. Карбонильная группа ароматических кетонов, особенно диарилкетонов, является более пространственно затрудненной, чем карбонильная группа алифатических кетонов, что еще больше понижает ее реакционную способность по отношению к нуклеофилам. Действительно, 2,6-дизамещенные арилке-тоны, которые очень сильно затруднены, иногда атакуются предпочтительно в ароматическое ядро (см. разд. 5.4.4.1). Существенным фактором является перекрывание я-орбиталей карбонильной группы и ароматического кольца, в результате чего нуклеофильное присоединение к карбонильной группе термодинамически менее выгодно для ароматических, нежели для алифатических карбонильных соединений, в силу большей потери резонансной энергии в процессе превращения тригонального атома углерода в тетраэдрический центр. Однако во многих конденсациях, где двойная связь в конечном счете образуется в две стадии как результат присоединения и последующей дегидратации, процесс в целом может быть экзотермичным, и в подходящих условиях реакции удается довести до конца. [c.765]

    При бромировании полициклического кетона (определяемом кинетическими факторами) преобладает аксиальный а-бромкетон ( orey, 1953d, 1954). Это правило обусловлено более предпочтительной енолизацией карбонильной группы в направлении аксиального атома водорода и предпочтительной атакой на енол атома брома, расположенного аксиально. Кори применил эти соображения при рассмотрении всех положений в стероидном ядре и показал для каждого положения, какой из двух эпимерных а-бром-оксостероидов должен образоваться, если течение реакции определяется кинетическими или термодинамическими факторами. [c.120]

    Восстановление карбонильной группы в любом другом положении стероидного ядра гидридами контролируется обоими факторами, причем стерический контроль подхода становится все более важным по мере возрастания пространственной затрудненности кетонной функции. При восстановлении Зр-ацетокси-5а-холестанона-7, например, подход реагента с р-сторопы слегка затруднен 18- и 19-метильными группами, в то время как аксиальные водородные атомы нри С-5, С-9 и С-14 сильно препятствуют атаке карбонильной группы с а-стороны молекулы. Такая зависимость от возможностей пространственного подхода сказывается на составе образующейся смеси эпимерных спиртов. Она состоит в этом случае на 55% из аксиального 7а-оксисоединения [92] в противоположность 20% 7а-эпимера, содержащимся в равновесной смеси [95]. [c.340]

    Была исследована реакция озона с соединениями, содержащими С=0-групну альдегидами, кетонами и кислотами. Соответствующие константы скорости взаимодействия приведены в табл. 3.12. Для уменьшения вероятности атаки ароматического ядра были выбраны простейшие гомологи, наиболее устойчивые к действию озона. Однако во всех случаях реакция протекала не по С—О-группе, а но соседним С—Н-связям или с енольной формой кетона, что было установлено по продуктам реакции и по сохранению полосы поглощения С=0 при 1710—1780 смГ в процессе реакции исследуемого вещества с озоном. [c.92]

    Галоидирование по радикальному механизму имеет место не только для насыщенных углеводородов, для которых ото, возможно, лучше всего известно, по и для молекул, содержащих различные группы заместителей, которые значительно влияют на скорости реакций и на место атаки радикала. Однако хорошо известно, конечно, что существует также полярный механизм галоидного замещения, особенно при галоидировании кетонов (и других веществ, способных к енолизации), катализированном кислотой или основанием в этом случае галоид становится в a-нoлoнieниe но отпошепию к активирующей группе. По полярному механизму протекает также замещение в ароматическое ядро нри обычных температурах. Тах им образом, необходимо быть уверенным в том, но какому из )тих механизмов протекает процесс. [c.277]



Смотреть страницы где упоминается термин Кетоны атака ядра: [c.52]    [c.299]    [c.32]    [c.210]    [c.214]    [c.246]    [c.210]    [c.214]    [c.210]    [c.214]    [c.496]    [c.820]    [c.820]    [c.291]    [c.537]    [c.630]    [c.630]    [c.243]   
Принципы органического синтеза (1962) -- [ c.185 ]




ПОИСК







© 2024 chem21.info Реклама на сайте