Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты альдегидами и кетонами

    Водный конденсат, называемый в технике также конденсаторной водой , образуется при охлаждении в трубчатых холодильниках отхо-.дящих газов процесса окисления парафинов. Получающийся при этом конденсат состоит из двух слоев верхнего, маслянистого, называемого также конденсаторное масло , и нижнего, упомянутого выше водного конденсата. Последний представляет 25—30%-ный раствор легколетучих низкомолекулярных жирных кислот, например муравьиной, уксусной, пропионовой и масляной, которые удерживают в растворе небольшое количество высших кислот. Вместе с ними присутствуют низкомолекулярные гидролизующиеся вещества, например лактоны, и, наконец, неомыляемые примеси в виде водорастворимых спиртов, альдегидов и кетонов. [c.469]


    При разложении моногидроперекисей образуются спирты, альдегиды и кетоны. При дальнейшем их окислений получаются более мелкие осколки молекул. Основными же продуктами разложения гидроперекисей являются оксикислоты. [c.44]

    Наконец укажем, что в некоторых нефтях различных месторождений обнаружено присутствие спиртов альдегидов и кетонов. [c.160]

    Реагент КС (кислые стоки) содержит в качестве основного вещества около 15 % смеси высокомолекулярных органических кислот, спиртов, альдегидов и кетонов. [c.80]

    Окисление легких алканов. В промышленности окисляют главным образом метан, пропан и бутан. С корость окисления возрастает от метана к бутану. Трудность регулирования процесса связана с тем, что продукты окисления (спирты, альдегиды и кетоны) окисляются легче, чем исходное сырье. [c.273]

    Таким образом, гидроперекиси, подвергаясь термическому или окислительному распаду, превращаются в ряд соединений, к которым относятся спирты, альдегиды, кетоны, кислоты, окси-и кетокислоты, фенолы, вода, СО, Oj и Hj. Спирты, альдегиды и кетоны были обнаружены и выделены также и из продуктов окисления нефтяных фракций. [c.264]

    В большинстве случаев, однако, вырожденное разветвление происходит в результате превращений промежуточных вешеств. Гидроперекиси, образующиеся при низкотемпературном окислении углеводородов в жидкой фазе, в случае большинства углеводородов значительно менее устойчивы, чем гидроперекись изопропилбензола, и превращаются в более устойчивые продукты окисления, в первую очередь в спирты, альдегиды и кетоны. [c.334]

    В реакционной воде, составляющей почти 50% от жидких углеводородов, содержится 1,5—2% кислородсодержащих соединений спирты, альдегиды и кетоны, а также жирные карбоновые кислоты (от уксусной до ундециловой). [c.688]

    Действие кислорода направляется преимущественно на третичный атом углерода, затем на вторичный и, наконец, на первичный. Гидроперекиси, в зависимости от строения углеводородного радикала и условий проведения окисления, разлагаются различно. Разложение гидроперекисей сопровождается разрывом связи между кислородными атомами и образованием спиртов, альдегидов и кетонов. [c.128]

    К кислородсодержащим органическим соединениям относятся спирты, альдегиды и кетоны, карбоновые кислоты, простые и сложные эфиры. [c.103]

    Окисление спиртов, альдегидов и кетонов, парафинов. [c.141]

    Окисление алканов, спиртов, альдегидов и кетонов [c.97]

    ОКИСЛЕНИЕ СПИРТОВ АЛЬДЕГИДЫ И КЕТОНЫ [c.430]

    Появление в воде любых других частиц сопряжено с нарушением системы водородных связей между молекулами воды. Поэтому в воде, как правило, растворимы вещества, способные к образованию новых водородных связей взамен разрушенных. К ним относятся вещества, содержащие атомы кислорода, в особенности гидроксильные группы, или атомы азота. Примером органических соединений, хорошо растворимых в воде, могут служить низшие спирты, альдегиды и кетоны, мочевина, формамид. Известно, что метиловый и этиловый спирты, ацетон, формамид смешиваются с [c.135]


    Таким образом, конечным продуктом окисления парафина являются жирные кислоты, а промежуточными продуктами — спирты, альдегиды и кетоны. — [c.93]

    Магнийорганические соединения имеют большое значение как промежуточные вещества в препаративном синтезе спиртов, альдегидов и кетонов, карбоновых кислот. В настоящем курсе эти синтезы не рассматриваются. [c.304]

    Кроме метаналя (формальдегида) НСНО, который является газом, все низшие альдегиды и кетоны представляют собой нейтральные жидкости, хуже растворяющиеся в воде и имеющие более низкую температуру кипения, чем соответствующие спирты. Альдегиды и кетоны обладают характерным едким запахом. [c.116]

    Способы получения. Окисление спиртов, альдегидов и кетонов. При окислении первичных спир-тов образуются карбоновые кислоты с тем же числом углеродных атомов. Вторичные и третичные спирты образуют несколько кислот с меньшим числом углеродных атомов в каждой из них  [c.146]

    Парафиновые углеводороды при обычной температуре не реагируют с концентрированной азотной кислотой при повышенной температуре концентрированная азотная кислота медленно окисляет парафиновые углеводороды с разрывом связи С—С, причем основными продуктами реакции являются карбоновые кислоты. Установлено, что в качестве промежуточных продуктов окисления образуются спирты, альдегиды и кетоны, а также эфиры азотной и азотистой кислот. [c.13]

    Для введения сульфогруппы в углеводородный радикал алифатических спиртов, альдегидов и кетонов применяется олеум с высоким содержанием серного ангидрида. [c.90]

    Парофазное окисление низших углеводородов явилось бы весьма заманчивым путем для прямого промышленного синтеза многих кислородных соединений, нанример низших спиртов, альдегидов и кетонов. Однако практическое осуществление таких процессов осложняется необходимостью создания громоздкой и дорогостоящей системы разделения образующихся сложных смесей продуктов. [c.208]

    В качестве примера ниже будет рассмотрено жидкофазное окисление бутана. Выбор бутана позволяет рассмотреть вторичные процессы окисления промежуточных продуктов — спиртов, альдегидов и кетонов. В то время, как ПО первичным процессам жидкофазного окисления, имеются весьма обширные данные, вторичные реакции, протекающие при этом процессе, изучены далеко не достаточно. Вероятно, важнейшими причинами недостаточной изученности механизмов образования фактически получаемых продуктов являются сложность протекающих реакций и несовершенство экспериментальных систем и аналитических методов, используемых в настоящее время для изучения реакций свободных радикалов. На основе имеющихся данных выдвигается гипотеза о механизме окисления. Следует подчеркнуть, что представления [c.212]

    Эти р-ции применяются в синтезе вторичных и третичных спиртов, альдегидов и кетонов. [c.313]

    В литературе имеются довольно разнообразные сведения о составе газов окисления (табл. 24), что объясняется проведением исследований на окислительных установках разного типа с полользованием гудрона разного фра.кционного состава и при разных режимах окисления. Степень расщифровки состава газов также неодинакова. Компоненты крнденсирующейея части углеводородной составляющей практически не идентифицируются отмечено лишь наличие фенолов, кислот, спиртов, альдегидов и кетонов [2] и указывается, что конденсат имеет молекулярную массу 250—260, плотность 880—890 кг/м до 320 С выкипает 30—50% и до 350°G — 63% [2, 262], некоторое количество выкипает вплоть до 480 °С [265]. В то же время неконденсирующиеся и несколько более тяжелые углевоДороды идентифицированы подробно [211]  [c.168]

    Изучен состав продуктов гидрогенизации итальянских углей. В бензиновой фракции обнаружены спирты, альдегиды и кетоны, в среднем масле — фенантрен, карбазол, пирен, метил- и диметилпирены, коронен и бензперилен [c.23]

    Хлорирование спиртов, альдегидов и кетонов свободным хлором. При хлорировании спиртов свободным хлором первоначальная реакция состоит в окислении спирта в альдегид или кетон, после чего происходит последовательное замещение атомов водорода в алкильной группе на хлор  [c.140]

    Из продуктов хлорирования спиртов, альдегидов и кетонов небольшое значение имеют 1,1,3-трихлорацетон и гексахлорацвтон, а наиболее важным продуктом является хлораль I3—СНО. Эта жидкость (т. КПП. 97,8°С) применяется для производства ряда ценных пестицидов, особенно трихлорацетата натрия и хлорофоса. [c.141]

    Гетерогенным и гомогенным окислением газообразных метановых углеводородов получают альдегиды, кетоны, спирты. Так, окис-лон1 ем метана кислородом воздуха в присутствии окислов азота получают формальдегид. При окислении пропана и бутана в жидкой фазе воздухом в присутствии ацетатов металлов образуется смесь спиртов, альдегидов и кетонов. [c.59]


    Химический путь образования нефтяных смол нз раститель-1П)го вещества Стадников видит в реакциях конденсации спиртов, альдегидов и кетонов в результате взаимодействия как самих зтих соединенпй между собой, так п вследствие реакций последних с сер-ппстьнш и азотистыми соединениями, а также с непредельными п ароматическими углеводородами. [c.443]

    Из нейтральных продуктов окисления масел были выделены спирты, альдегиды и кетоны [4]. Наряду с этими продуктами обра- [c.260]

    Михаил Иванович Коновалов (1858—1906) окончил в 1884 г. Москов ский университет. В 1896—1899 гг.—профессор Московского сельскохозяйственного института, с 1899 г.—профессор Киевского Политехнического инсти-гута. Первые работы М. И. Коновалова были посвящены изучению природы кавказской нефти. Он разработал методы выделения, очистки и получения различных производных нафтенов (стр. 545), изучал действие брома и бромистого алюминия на нафтены. В 1888 г, Коновалов открыл нитрующее действие разбавленной азотной кислоты при нагревании ее с предельными углеводородами (стр. 358). Исследования в этой области он обобщил в докторской диссер гации Нитрующее действие азогной кислоты на углеводороды предельного ха рактера (1893). Предложенный им метод позволил получить и исследовать многочисленные новые нитросоединения. М. И. Коновалов разработал способ получения из нитросоединений оксимов (стр. 194), спиртов, альдегидов и кетонов, Он использовал также реакцию нитрования для определения строения углеводородов, создал метод разделения нитросоединений и их очистки [c.56]

    Традиционные учебники и лекционные курсы по органической химии обычно разбиты на главы, соответствующие типам соединений (например, алканы, алкены, алкины, спирты, альдегиды и кетоны и т. д.), юзассам реакций, общим теоретическим вопросам и т. п. Такая схема кажется вполне логичной (по крайней мере, привычной ), очень удобна для преподавания и изучения (в частности, для контроля усвоения материала студентами) и даже для тематического структурирования научно-исследовательских организаций. Тем не менее, она представляется нам порочной в принципе, так как при таком подходе единая, живая ткань нашей науки рассыпается на набор [c.542]

    Со спиртами альдегиды и кетоны образуют, часто даже без добавления кислотных катализаторов, полуацетали [соединение I на схеме присоединения (Г.7.21), написанной для общего случая]. В присутствии сильных кислот реакция идет дальше с образованием ацеталей (из альдегидов) или кеталей (из кетонов)  [c.63]

    Взаам.адействие магнийорганических соединений с производными карбоновых кислот — синтез вторичных и третичных спиртов, альдегидов и кетонов [c.269]

    Синтез гликолей и их галоидгилринов. .. Взаимодействие магнийорганических соединений с производными карбоновых кнслот—синтез вторичных к третичных спиртов альдегидов и кетонов....... [c.399]

    Растворенные органические вещества (РОВ). Эта группа веществ включает различные органические соединения органические кислоты, спирты, альдегиды и кетоны, сложные эфиры, в том числе эфиры жирньк кислот (липиды), фенолы, гуминовые вещества, ароматические соединения, углеводы, азотсодержащие соединения (аминокислоты, амины, белки) и т. д. Для количественной характеристики РОВ используют косвенные показатели общее содержание Сорг, Морг, Рорг, перманганатную или дихроматпую окисляемость воды (ХПК), биохимическое потребление кислорода (БПК). [c.35]


Смотреть страницы где упоминается термин Спирты альдегидами и кетонами: [c.196]    [c.189]    [c.139]    [c.547]    [c.219]    [c.55]    [c.123]    [c.214]    [c.177]    [c.652]    [c.397]    [c.53]   
Органическая химия (2002) -- [ c.49 , c.500 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды, кетоны



© 2025 chem21.info Реклама на сайте