Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоли синтез

    Полиэтилентерефталат получается поликонденсацией этиленгликоля и терефталевой кислоты. Синтез полиэтилентерефталата может быть осуществлен различными методами прямым взаимодействием терефталевой кислоты и гликоля, пере этерификацией низших эфиров терефталевой кислоты гликолем, реакцией дихлорангидрида кислоты и этиленгликоля. [c.74]


    На их основе готовят полиэфиры, отличающиеся интересными свойствами. Обычно при синтезе ненасыщенных полиэфиров в качестве исходных компонентов используют фумаровую кислоту или малеиновый ангидрид, фталевую кислоту и пропиленгликоль, к которому иногда добавляют в небольших количествах диэтилен-гликоль. Отверждают такой полиэфир путем сополимеризации ненасыщенных звеньев цепи со стиролом. Если вместо пропиленгликоля [c.53]

    Даже простые краун-эфиры весьма дороги, хотя их получение в лабораторных условиях не так уж и трудно. 1,4,7,10,13,16-Гек-саоксациклооктадекан (18-краун-6) (1) может быть получен из триэтиленгликоля и его дитозилата несколькими способами с трег-бутоксидом калия в бензоле (выход 33%) [13], в ТГФ (выход 60%) [14] или же из того же самого гликоля и продажного дихлорида (1,8-дихлор-3,6-диоксаоктана) с гидрожидом калия в водном ТГФ (выход 40%) [15]. Наконец, обработка (2-хлорэтилового) эфира и тетраэтиленгликоля гидроксидом калия в ТГФ дает 18-краун-6 с выходом 30% [20]. Полученный сырой продукт очищается через комплекс с ацетонитрилом. (Методы синтеза см. в [1006], другие способы очистки — в [1881], методы получения гидроксиметил-18-крауна-6 — в [1380, 1745], а 2,6-диметил-18-крауна-6 — в [1707] недавние синтезы различных оптически активных краун-эфиров описаны в [1618, 1741, 1773, 1882], обзор дан в [1891].) [c.85]

    Другие сложные эфиры гликолей обычно получают рассмотренной ранее этернфикацией гликолей карбоновыми кислотами. Одна-iполучения моноэфиров интересен прямой синтез из оксида этилена и карбоновой кислоты  [c.290]

    Пероксид водорода широко применяется в медицине, в качестве отбеливающего средства, как промежуточный продукт органического синтеза (получение органических пероксидов, эпоксидных соединений, гликолей, надкислот) и как окислитель для жидкост- [c.410]

    Ацетилен присоединяет альдегиды с образованием ацетиленовых гликолей (синтез Реппе)  [c.32]

    Окись пропилена находит широкое применение в нефтехимической промышленности в качестве промежуточного продукта, для синтеза гликолей, пропаноламинов, полиэфирных смол и др., а также в качестве стабилизатора и растворителя для нитроцеллюлозы, виниловых смол и лаков на их основе. [c.328]

    При взаимодействии ацетилена с алифатическими кетонами также образуются ацетиленовые гликоли (синтез Реппе)" - [c.33]

    Существуют прямые экспериментальные доказательства возможности абиогенного синтеза в примитивных смесях, имитирующих состав добиологической земной атмосферы, под действием УФ-лучей таких соединений, как этан, этилен, пропан, бутан, ацетилен, формальдегид, мочевина, гликоль. Синтез этих относительно простых низкомолекулярных соединений может рассматриваться как промежуточный этап синтеза более сложных биологических молекул. По мере усложнения молекулярной организации спектры поглощения сдвигаются в длинноволновую сторону, смещая красную границу фотохимически активного солнечного света. Более длинноволновым поглощением обладают и радикалы. [c.354]


    Метод применяется для синтеза высших гликолей гидролизом полученных эпоксидов. [c.169]

    Можно утверждать, что растительное сырье по возможностям получения из него различных продуктов почти не уступает нефти и углю [24, с. 333]. При этом необходимо учитывать также большие возможности химической переработки лигнина [17] и микробиологического синтеза различных продуктов из моносахаридов. Как пишет В. Д. Беляев Развитие гидролизных производств в перспективе должно идти по пути создания крупных комбинатов с многотоннажным производством широкой номенклатуры продуктов химической и биохимической переработки сырья, включая пищевую глюкозу, кристаллический ксилит, сорбит, глицерин, гликоли и другие производные многоатомных спиртов [18]. [c.189]

    Прежний метод их синтеза состоял во взаимодействии гликолей с фосгеном. Более дешевый и перспективный путь получения алкиленкарбонатов открыт сравнительно недавно. Оказалось, что (х-оксиды реагируют с диоксидом углерода с расширением цикла и образованием циклических карбонатов 1,2-гликолей. Реакция катализируется бромидами, имеет нулевой порядок по СО2 и, по-видимому, протекает по такому механизму [c.290]

    Синтез гликолей (С. А. Поляков). ........... [c.5]

    Ди- и триэтиленгликоли получают в качестве побочных продуктов в процессе получения этиленгликоля, а также целенаправленным синтезом. При этом, в отличие от процесса получения этиленгликоля, шихта состоит из смеси этилен-гликоля, воды и окиси этилена в объемном соотношении 3 3 1. В диэтиленгликоль превращается около 85% окиси этилена, а остальное количество — в более высокомолекулярные гликоли. [c.275]

    Ньюленд и сотрудники установили, что ртуть обладает широким диапазоном каталитического действия в реакциях ацетилена и его гомологов с азотной кислотой (получение щавелевой кислоты), со спиртами и гликолями (синтез ацеталей), ароматическими углеводородами и фенолами [323—329]. Во всех этих реакциях, как показали исследователи, ртутная соль участвует только в первой стадии, образуя сложный прол1ежуточный продукт присоединения по тройной связи. При этом характерной особенностью реагента является наличие в его молекуле ОН-группы или подвижного водорода. [c.69]

    При поликонденсации, в отличие от полимеризации, нарастание молекулярной массы полимера происходит ступенчато. Например, при синтезе сложного полиэфира из гликоля и дикарбоновой кислоты на первой стадии образуется димер [c.157]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    Для синтеза полиэфирных смол могут применяться ненасыщенные спирты и кислоты. Промышленное значение имеют ненасыщенные полиэфиры, получаемые поликонденсацией гликолей с малеи-новым и фталевым ангидридами. Ненасыщенные полиэфиры способны в определенных условиях ог-верждаться (образовывать сетчатые структуры). Макромолекулы линейных ненасыщенных полиэфиров могут сшиваться также при введении мономеров (стирола, бутадиена). [c.73]

    Осювываясь на этом, можно предвидеть результаты и выбрать оптимг.льный для данного процесса тип реакций а-оксидов. Так, при целевом синтезе первых продуктов присоединения к реагентам, обладающим значительной кислотностью (кислоты, фенолы), когда К К2, выгоден нуклеофильный катализ, позволяющий существенно повысить селективность. При К[ К2 тип реакции мало влияет на селективность, но и здесь предпочитают использовать нуклеофильный катализ (реакции с гликолями и оксиэти-лнров1иными веществами). В противоположном случае взаимо- [c.285]

    Конденсация альдегидов с олефинами, идущая в присутствии катализаторов кислотного тииа (реакция Принса), приобрела практическое значение для синтеза ряда веществ. В зависимости от условий проведения реакции получаются главным образом производные 1,3-диоксана или 1,3-гликоли. Кроме того, побочно образуются ненасыщенные одноатомные спирты, насыщенные спирты (продукты гидратации исходных олефинов) и более сложные кислородсодержащие соединения. При повышении температуры может также происходить дегидратация гликоля и ненасыщенного спирта с получением диена. Образоватше всех этих веществ хорошо объясняет следующая схема  [c.555]


    Для непрерывного осуществления таких реакций, но в более интенсифицированном режиме (синтез гликолей при катализе фосфорной кислотой, получение этаноламинов под давлением), наибо.1ее подходят кожухотрубные реакторы (рис. 85, б). В них обрат юе перемещивание незначительно, и процесс протекает с более высокой селективностью. [c.295]

    Новый метод синтеза состоит из двух стадий. Сначала ацеток- илируют этилен с образованием ацетатов гликоля  [c.454]

    Гидрирование насыщенных гндрокснальдегидов и гидроксике-тонов имеет значение при синтезе ряда гликолей из продуктов альдольной кондеисации. Так, при получении бутандиола-1,3 альдоль восстанавливают в присутствии ранее перечисленных катализаторов  [c.502]

    Гликолевая кислота прп гидрировании преврап ается в этплен-гликоль, и основаиньп г иа этом метод его синтеза из формальдегида, оксида углерода и воды получил промышленное зиаченпе  [c.506]

    Наиболее важным производством периода первой мировой иопны был синтез нового вида взрывчатых веществ — нитро1Ли-т олей их продолжали получать и по окончании войны (для нужд горнорудной промышленности). Гликоли широко применяются также в качестве антифризов и растворителей. К числу важнейших продуктов ряда глпколей относятся этиленгликоль, пропиленгликоль, диэтиленгликоль, эфиры простые и сложные как этиленгликоля, так и диэтилеигликоля (так называемые целлозольвы и карбитоли), диоксан, получающийся по методу А. Е. Фаворского [.31 дегидратацией этиленгликоля [c.456]

    Получаемые по реакции Принса 1,3-диоксапы п 1,3-гликоли имеют некоторое самостоятельное значение в качестве растворителей и промежуточных продуктов для синтеза пластификаторов, эмульгаторов и т. д. Но главное практическое значение эта реак-ци5[ нашла для производства изопрена, технология которого была впервые разработана в Советском Союзе М. И. Фарберовым и М. С. Немцовым. В настоящее время изопрен этим путем получают и в других странах. [c.556]

    Позднее ВНИИгазом были проведены исследования по изучению физико-химических свойств смесей аминов (ДЭА, МДЭА, ДЭА + МДЭА) с диметиловыми эфирами полиэтилен-гликолей в различных соотношениях, на основании чего было рекомендовано использование нового отечественного абсорбента Экосорб , по свойствам идентичного дорогостоящему импортному Укарсолу . Экосорб разработан на основе компонентов, выпускаемых отечественной промышленностью (АО Синтез г. Дзержинск и ПО Азот г. Кемерово) и отличается значительно более низкой стоимостью. [c.59]

    Алкиленкарбонаты (циклические эфиры угольной кислоты и гликолей) в последние годы нашли широкое промышленное использование в качестве эффективных растворителей высокомолекулярных соединений, экстрагентов ароматических углеводородов и как исходные продукты для некоторых синтезов. Алкиленкарбонаты (в основном этилен- и пропиленкарбонат) производятся в промыш-ленно.м масштабе в США, ФРГ, Японии. [c.271]

    Высококачественный этиленгликоль получают в промышленности неката-лизированной гидратацией окиси этилена при мольном отношении вода/окись этилена 16—20, температуре 190—200 С, давлении около 2 МПа и продолжительности контакта 40 мин. Гидролизат, представляющий собой разбавленный водный раствор гликолей, концентрируют отгонкой воды до 15%-ного содержания и подвергают ректификации. Водный конденсат рециркулируют на синтез. Селективность превращения окиси этилена составляет в этиленгликоль — 82— 86% в диэтиленгликоль — 12—14% в триэтиленгликоль — 2—3%. [c.274]

    Вторая мировая война поставила перед промышленностью органического синтеза новые весьма сложные и ответственные задачи. Потребовалось, отнюдь не снижая масштабов стары.х производств (иапример, гликолей и их производных, тетраэтилсвинца, изопропилового спирта и его производных, синтетического волокна и синтотичоскпл слюл), сделать чрезвычайные усилия для того, чтобы производство стратегических материалов [c.460]

    А. Д. Петров и Е. В. Митрофанова [64] установили, что в случае тсетонов, не содержащих метильной группы, растворитель может быть исключен, а температура повышена до 100°. Повышение температуры дает возможность достигать высоких выходов [ ликолей, даже из сильно разветвленных кетонов, а устранение такого растворителя, как эфир, делает процесс весьма простым и доступным для осуществления в промышленных условиях. Однако реакция А. Е. Фаворского, столь удобная для синтеза ацетиленовых спиртов и гликолей из кетонов, совер- [c.485]

    Синтез указанных продуктов проводился в две стадии первая — получение полиэтиленгликоля различного строения конденсацией окиси этилена с низкомо-лекз лярным гликолем, диамином или триэтаноламином, вторая — этерификации [c.146]

    Водородные атомы тиофена замещаются (особенно в а-но-ложении) в очень мягких условиях. Поэтому тиофены можно применять для синтеза соединений, которые другим способом получить практически невозможно. В результате восстановительной десульфуризации тиофенов легко образуются алифатические углеводороды заданного строения, спирты, гликоли, карбоновые кислоты, ОКОИ- и аминокислоты, аминоснирты, простые и сложные эфиры и др. [88—91]. Например, из тиофенов синтезируют алканы при температуре ниже 100° С  [c.67]

    Для лабораторпы. с синтезов можио приобрести окись этилена в стальных баллонах иснользуют также растворы окиси этилена в метиловом спирте или толуоле. В водо окись этилепа растворима в любых соотношениях в водном растворе при комнатной температуре окись постепенно переходит в гликоль. Реакция окиси этилена с хлористым водородом была уже описана выше. [c.400]

    Гликоль (этиленгликоль) является в настоящее время одним из продуктов тяжелого органического синтеза и производится во все возрастающих количествах. Впервые ого получили в промышленном масштабе в 1922 г. до этого времени он был известен только в иаучно-исследовательских лабораториях. Перное применение этиленгликоль иашел в качество антифриза в автомобильных радиаторах. Вскоре спрос па гликоль стал во всех странах расти из года в год. В настоящее время 80% всего потребляемого гликоля [c.400]


Смотреть страницы где упоминается термин Гликоли синтез: [c.19]    [c.451]    [c.2]    [c.272]    [c.272]    [c.230]    [c.500]    [c.363]    [c.349]    [c.399]    [c.618]   
Органическая химия (1974) -- [ c.199 , c.832 , c.834 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.161 , c.164 , c.225 , c.269 , c.284 , c.285 , c.484 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды ацетиленовые. синтез ацетиленовые спирты и гликоли

Гликоли

Гликоли дитретичные, синтез димагниевые соединения

Гликоли эфиры, синтез натрий алкиленоксид

Гликоль из синтез-газа

Гликоль, образование при синтезе дивинила из спирта

Гликоляты

Катализаторы синтеза ацетиленовых гликолей

Методы синтеза гликолей

Реппе синтез ацетиленовых гликолей

Синтез ацетиленовых спиртов и гликолей из кетонов и альдегидов

Синтез гликолей и их галоидгидринов

Синтез гомологов диацетилена из ацетиленовых гликолей

Синтез спиртов и гликолей

Синтезы па основе гликолей

Швец В. Ф., Козловский Р.А., Макаров М.Г., Сучков Ю.П., Кустов А.В., Козловский И.А. Разработка новых селективных гетерогенных катализаторов для синтеза гликолей и их производных

Эфиры в синтезе ионитов гликолей



© 2024 chem21.info Реклама на сайте