Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура процесса окисления парафино

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]


    Продукты окисления парафина — высокомолекулярные кетоны, альдегиды, спирты, жирные кислоты и др. Запах, обусловленный этими веществами, появляется в парафине в результате окисления его кислородом в процессе производства и при хранении. Окислению парафина способствуют повышенные температуры обработки (выше 80—100°С), наличие кислорода и катализаторов окисления (сульфосоединения, образующиеся во время кислотной очистки при повышенных температурах, продукты окисления парафина, остатки от длительного хранения парафина в резервуарах). Чтобы уменьшить окисление, следует хранить парафин в резервуарах при температурах не выше 80 °С. Кроме того, на установках обезмасливания избирательными растворителями нужно снижать содержание кислорода в циркулирующем инертном газе. [c.104]

    Этерификация проводится под вакуумом при температуре ПО— 115° и остаточном давлении 200—300 мм рт. ст. Смесь борнокислых эфиров жирных спиртов и неомыляемых поступает в вакуум-аппарат, где при остаточном давлении 1—5 мм рт. ст. и при соот ветствующих температурах отгоняют углеводороды. Сконденсированные углеводороды возвращаются в процесс окисления парафина. [c.50]

    Расход поступающего в каждую колонку воздуха контролируется при помощи реометров 6. Отработанный воздух и продукты окисления выводятся из последней по ходу процесса колонки 5. Количество вводимого в систему парафина практически равно количеству выводимого из нее оксидата. Отработанный воздух перед выходом в атмосферу проходит холодильник 7, в котором конденсируются часть легколетучих продуктов окисления, вода и не растворимые в ней продукты, получившие название масляный конденсат . В качестве катализатора использовался перманганат калия. Активация парафина проводилась двумя методами. В первом случае активируемое сырье перемешивалось при помощи мешалки, во втором — воздухом, подаваемым в парафин до начала индукционного периода и появления в парафине свободных кислот. Активация по первому методу длилась 2 часа, по второму в зависимости от состава сырья — от 20 до 60 мин. Активация в том и в другом случае проводилась периодическим способом при 120°. При активации парафина по первому методу катализатор переходил в тонкодисперсную взвесь, сохраняющуюся только при постоянном перемешивании парафина, а по второму — в растворимое в нем состояние. Активация но второму методу сопровождалась глубокими химическими изменениями, происходящими с сырьем и катализатором. Катализатор переходил в калиевые и марганцевые мыла, которые, как было показано исследованиями ГрозНИИ [3], хорошо растворяются в парафине при температуре его окисления. Парафин, прошедший такую активацию, может храниться без заметной потери активности [c.232]


    Процесс окисления парафина ведется со ступенчатым изменением давления по длине реактора от 10—15 ати в начале реактора со снижением давления после каждого диффузора. На выходе реактора давление соответствует атмосферному. Температура процесса 160° С. Быстрота реакции и большие скорости потока позволяют легко осуществить непрерывный процесс окисления парафина. [c.104]

    Поскольку перманганат калия—избирательный катализатор, широко применяемый в процессах окисления парафинов для получения одноосновных карбоновых кислот, мы также применяли его 25 о-ный водный раствор в реакциях окисления парафиновой фракции. Для установления оптимальной концентрации катализатора были проведены две серии опытов. В первой серии (опыты 1 и 2) катализатор вводили при 135°С в реакционную зону, куда пропускали воздух в количестве 150 л/час в течение сО мин., после чего температуру понижали до ПО°С и реакцию продолжали до конца при этой температуре (таблица 36). [c.127]

    Минимальная температура газофазного окисления парафинов ограничена скоростью реакции и находится в интервале 250— 280 °С. На практике процесс обычно проводят при 350—430 °С. Чаще всего осуществляют некаталитическую реакцию, поскольку дан<е мягкие катализаторы окисления могут снизить выход спиртов и альдегидов, способствуя образованию продуктов глубокого окисления. [c.527]

    Скорость образования жирных кислот в процессе окисления парафина молекулярным кислородом воздуха в значительной степени зависит от температуры. При окислении очищенного дрогобычского парафина без катализатора с понижением температуры окисления от 170 до 120 °С скорость прироста кислотного числа окисляемой массы снижается в 9—10 раз (рис. 7). При даль- [c.38]

    Для снижения выходов побочных продуктов реакции при сохранении установившейся в практике глубины превращения твердого парафина в высшие кислоты (до 30—35%) начали проводить реакцию в более мягких условиях, т. е. пошли главным образом по пу-ги снижения температуры процесса окисления. Наиболее благоприятным температурным режимом, при котором менее интенсивно протекали побочные реакции, явились температуры 101—105° [17]. [c.11]

    Слб)дует отметить, однако, что при повышении температуры окисления до 140° С скорости каталитического и некаталитического процессов практически совпадают [145]. Способность катализатора изменять состав продуктов окисления в сторону минимального образования карбонильных соединений — очень важный фактор для технологического процесса окисления парафина. Карбонильное число оксидата зависит в основном от присутствия кетокислот, которые снижают качество СЖК и повышают выход кубового остатка [112]. [c.362]

    В опыте 1 (окисление при снижающейся температуре до 105°) происходит уменьшение количества оксикислот в кислотах в процессе окисления парафина (рис. 7). [c.286]

    Изучено влияние температуры и катализатора на процесс окисления парафина на выход и качество получаемых синтетических жирных кислот. [c.291]

    На заводах в качестве сырья для получения синтетических жирных кислот используются твердые парафины с температурой плавления 52—54° С. Окисление парафина осуществляется кислородом воздуха при температуре 105—120° С в присутствии катализатора [74]. В качестве катализатора применяется перманганат калия в количестве 0,2% от веса исходного парафина. Процесс окисления периодический. Единовременная загрузка окислительной колонны — 30 т смеси свежего и возвратного парафина, [c.149]

    На промышленной установке в Шебекино окисление парафинов осуществлено в условиях периодического процесса. Время пребывания сырья в зоне окисления 3—4 ч. На окисление подается предварительно нагретая смесь свежих и возвратных углеводородов. Борная кислота вводится в окислительную колонну в виде ее суспензии в возвратных углеводородах. Процесс окисления осуществляется при температуре 165—170° С. В качестве окислителя используется азотокислородная смесь с содержанием кислорода 3—5%. Расходуемый на окисление кислород восполняется добавлением свежего воздуха с одновременным удалением части циркулирующего газа. Глубина превращения исходных углеводородов поддерживается на уровне 25—30%. [c.161]

    Объектом многочисленных исследований было получение жирных кислот из нефтяного сырья (особенно парафина) для мыловарения или производства синтетических жиров [314—318]. Производство синтетических жирных кислот вызывает особый интерес в условиях нехватки натуральных жиров (например, в военное время). При невысоких температурах и атмосферном давлении реакция окисления парафина воздухом протекает очень медленно. В реакционной смеси окисления парафина (температура плавления -Ь55° С) при 110° С даже через 280 часов после начала процесса было обнаружено очень мало продуктов окисления [319, 320]. [c.586]


    Скорость окисления парафинов нормального строения увеличивается с ростом их молекулярного веса метан — наиболее трудно окисляемое соединение этого ряда. Несмотря на то что окисление (без катализаторов) метана начинается уже около 400 °С, процесс приобретает заметную скорость лишь при температуре около 575 °С, тогда как гомологи метана окисляются при более низкой температуре. [c.134]

    Окисление твердого парафина в СЖК. Из-за большой длины цепи в этом случае получаются очень сложные смеси продуктов. Атака молекулы углеводорода осуществляется с равной вероятностью по любому нз вторичных атомов углерода, и разрыв цепи происходит по любой углерод-углеродной связи. Образуются недо-окисленные продукты — кетоны с тем же числом атомов углерода и спирты разного строения, Прп окислении твердого парафина Сзо полученные кислоты на 60% состоят из ф,ракции Сю—С20, но образуются кислоты l—С4, а также кислоты С5—Сд и высшие (более 20 атомов С), Особенностью высших карбоновых кислот является их способность к окислению в оксикислоты и лактоны, кето-кнслоты н дикарбоновые кислоты. Примесь последних ухудшает качество целевых кислот, заставляя ограничивать степень конвер-си исходного парафина и температуру процесса. [c.382]

    С учетом всех этих соображений был разработан процесс жидкофазного каталитического окисления парафина со следующими показателями глубина окисления парафина не более 30—35% (что соответствует кислотному числу а 70 мг КОИ на 1 г оксидата) в начале процесса, когда карбоновые кислоты только начинают накапливаться, поддерживают температуру 125—130°С, а затем ее снижают до 105—110°С окисление проводят при атмосферном давлении, вводя воздух в реакционную барботажную колонну через распределительные устройства с большим числом довольно мелких отверстий (1—2 мм). Применение более чем двукратного избытка воздуха способствует интенсивной турбулизации реакционной массы. При этих условиях и с указанными ранее количествами марганцевого катализатора окисление парафина ведут в течение 15—20 ч. [c.384]

    Окисление нафтеновых углеводородов (цикланы) имеет много сходства с окислением парафинов. При газофазном процессе происходит глубокая деструкция цикла, но при умеренной температуре [c.385]

    Башкиров с сотрудниками [55, 56] разработал хорошо управляемый процесс мягкого окисления высокомолекулярных парафинов, позволяющий получать в качестве основного продукта реакции предельные алифатические спирты, в которых преобладают кислородные соединения с тем же числом атомов углерода, что и у исходных парафинов. Процесс осуществлен в заводском масштабе. Особенность метода окисления парафина состоит в том, что, регулируя температуру, скорость подачи газа-окислителя, и концентрацию в нем кислорода, а также продолжительность окисления, удается осуществить процесс жидкофазного окисления высокомолекулярных парафинов с высокой степенью избирательности. Процесс ведется при температуре 165—170° С, продолжительности 4 ч и скорости подачи газа-окислителя (азотокислородная смесь, содержащая 3 % кислорода) 500—1000 л на 1 кг парафина в 1 ч. В этих условиях выход [c.58]

    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]

    Характеристика жирных кислот зависит не только от состава сырья, но и от самого процесса окисления. В данном случае окисление проводилось на опытной установке по методу непрерывного окисления жидких парафинов. Процесс проводился на катализаторе — смеси нафтената марганца и калия — при температуре 130° с коэффициентом рециркуляции 3. [c.36]

    В процессе обработки парафина дымящей азотной кислотой при обычной температуре или крепкой азотной кислотой при нагревании идет окислительная деструкция парафина с образованием гаммы низкомолекулярных кислородсодержащих соединений и в том числе одноосновных предельных карбоновых кислот. В процессе окисления парафина хромовой кислотой при нагревании наряду с низкомолекулярными предельными кислотами была получена церотиновая кислота (С. бИдзОг), содержащая углеродную цепь из 25 атомов углерода. При окислении парафина азотной кислотой была выделена высокомолекулярная предельная одноосновная лигноцерино-вая кислота (С24Н48О2) и низкомолекулярная двухосновная пробковая кислота (НООС(СН. )вСООН). При глубокой окислительной деструкции среди кислородсодержащих продуктов реакции, как правило, содержатся и низкомолекулярные одно- и двухосновные карбоновые кислоты [57]. [c.59]

    При окислении высших углеводородов получают еш,е менее однородные продукты. Согласно современным данным, даже у парафинов с совершенно прямой цепью действие кислорода по статистическим законам распространяется на всю углеродную цепь между тем технические парафины всегда имекЬт разветвленное строение. В Германии на протяжении нескольких лет применяли процесс окисления парафинов воздухом при температуре 130—150° с целью получения жирных кислот, пригодных для производства мыла [13]. Получаемые таким образом жирные кислоты представляют собой смесь очень широкого фракционного состава и значительно дороже природных кислот, у которых число углеродных атомов колеблется в узких пределах. Большое значение имеет процесс окисления циклогексана 114], обеспечиваюш,ий получение наряду с адипиновой кислотой смеси циклогексанола и циклогексанона эту смесь в свою очередь можно окислить до адипиновой кислоты или превратить в циклогексанон, а затем — в капролактам. Для промышленности очень интересен и важен процесс окисления кумола по Хокку [151 с получением гидроперекиси, которая под действием разбавленной сер- [c.339]

    Более эффективным является гомогенный катализатор, представляющий собой марганец-натриевые или марганец-ка-лиевые соли синтетических жирных кислот. В качестве сырья для получения компонентов катализатора используют 25%-ный раствор сульфата марганца, 40%-ный раствор гидооксида натрия и фракцию синтетических жирных кислот С5—Сю. С изменением концентрации катализатора в реакционной смеси выход кислот меняется. На скорость процесса жидкофазного окисления парафина большое влияние оказывает температура. Реакция окисления парафина экзотермическая, на 1 кг превращенного парафина выделяется 2090 кДж. Поэтому во избежание повышения температуры процесса выделяемое тепло необходимо отводить. [c.178]

    Получение поверхностноактивных карбоновых кислот окислением соответствующих алифатических углеводородов в странах Европы производится гораздо более экономичными способами, чем в США, причем процессы окисления изучены европейскими исследователями значительно лучше. Для успешного окисления необходим тщательный отбор углеводородного сырья. Парафины и изопарафины окисляются легко и с примерно одинаковыми скоростями. Циклические парафиновые углеводороды (церезины) гораздо более устойчивы к окислению и поэтому не рекомендуются в качестве сырья [64]. Известный процесс окисления парафинов в жирные кислоты заключается в продувании воздуха через смесь парафинов при температуре 150° в присутствии небольшого количества КМПО4. При этом образуется смесь жирных кислот разного молекулярного веса наряду со значительными количествами окси- и кетокислот. Эти соединения получаются в конце процесса и представляют собой нежелательные побочные продукты. Продолжительное окисление приводит к понижению среднего молекулярного веса неокисленных кислот [65]. [c.29]

    Основными отходами производства синтетических жирных кислот (СЖК) окислением твердого парафина являются кубовые остаточные продукты (фр.Сзо и выше). Они получаются при дистилля-ционнон перегонке сырых кислот с относительно большим выходом (до 30% . Изменение выхода кубового остатка в основном зависит от температуры конца кипения исходного парафина. Кроме того, выход т качество их определяются как селективностью процесса окисления парафина, так и принятой технологической схемой выделения дистиллированных кислот. [c.38]

    Недавно в США введена в эксплуатацию в г. Пампа (штат Тексас) новая установка для окисления газообразных парафинов [14]. На ней окисляют воз-духом бутан, полученный из природного газа газовых скважин в Хуготоне, под давлением, которое, как предполагают, выше, чем на установке в г. Бишопе. По-видимому, одновременно применяют также катализатор, что позволяет снизить температуру процесса. Основным продуктом является уксусная кислота, но, смотря по желанию, можно также получать пропионовую и масляную кислоты с несколько большими выходами. Разделение и очистка продуктов реакции происходят, как описано выше. Остающийся после масляной абсорбции азот подают в газовые турбины, где он, теряя давление, отдает при этом энергию. Поразительно то, что на новой установке формальдегид не получается [15]. [c.438]

    На установке Дойче Гидрирверке в Родлебене окисление проводят при 101°. После короткого подъема температуры в начале реакции, не превышающего 130°, содержимое аппарата охлаждают до 101° и эту температуру выдерживают в течение всего процесса окисления. Расход воздуха на 1 т парафина равен 40 м /час. Продолжительность процесса составляет 21—23 час. [68]. Кислотное число оксидата-сырца равно 70—75. [c.455]

    Как было уже сказано, выходы овделъных фракций зависят от способа окисления, температур выкипания исходного парафина, глубины окисления и т. д. В табл. 122 приведены результаты разгонки, проводившейся в промышленном масштабе на заводе Дойче Феттзоире-верке . Исходным сырьем для, окисления служил главным образом синтетический парафиновый гач. Общий выход жирных кислот составлял около 80% в расчете на превращенный парафин. Около 15% терялось уже в процессе окисления в виде двуокиси и окиси углерода и растворимых в воде продуктов окисления 1—2% терялось при перегонке. [c.461]

    Переходя к практическому применению приведенных выше теоретических основ низкотемпературного окисления парафиновых углеводородов, можно указать на незначительный пробел в использовании парафинов между фракцией Сд—С4 и твердыми парафинами (выше g ), Следует отметить, что фирмы Селаниз Корпорейшн и Ситиз Сервис Компани проводят большую работу по окислению пропана и бутана с целью получения алифатических кислот, кетонов и подобных соединений. Однако эти операции проводятся, по-видимому, при гораздо более высокой температуре (выше 300° С), чем рассмотренные в данном обзоре, и об этой работе опубликовано мало литературных данных. Целесообразно завершить данную статью кратким описанием промышленного процесса окисления твердого парафина, применявшегося, в Германии. [c.279]

    Тяжелая часть нефти представляет собой сложную смесь неидентифицированных углеводородов и гетеросоединений самого разнообразного строения. Для решения практических задач определяют содержание отдельных классов или групп веществ асфальтенов, силикагелевых смол и масел. Среди последних различают соединения парафиновой, нафтеновой и ароматической основы. Кислород воздуха, взаимодействующий с нефтяным сырьем, расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, другая — химически связывается компонентами сырья. С повышением температуры окисления увеличивается доля кислорода, расходуемого на образование воды. В целом процесс окисления характеризуется переходом масел в смолы и смол в асфальтены. В масляной части наибольшая скорость окисления наблюдается у тяжелых ароматических углеводородов, в то время как парафино-нафтеновая группа углеводородов почти не затрагивается. [c.287]

    Количество продуктов деструкции растет с повышением температуры, составляя, например, для пропана 76 и 987о соответственно прн 250 и 373 °С. Данный процесс реализован только в США и имеет задачей получение формальдегида, ацетальдегида, метанола и так называемого смешанного растворителя, содержащего спирты ( 2—Сз, ацетон и метилэтилкетон. Окисление парафинов .3—С4 ведут при 400°С и недостатке кислорода в пустотелом адиа- ти1еском реакторе под давлением 0,7—2 МПа. Недостаток про- [c.379]

    Окисление парафинов в карбоновые кислоты. Этот путь окисления парафинов всегда связан с деструкцией углерод-углеродных сгязей. Процесс протекает в жидкой фазе — термически или в при-с>тствии катализатора при температуре от 105—120 до 170—200 °С. Имеются два направления  [c.380]

    Ско ость жидкофазного окисления парафина зависит от многих факторе в — от концентрации катализатора, температуры, парциального давления кислорода, линейной скорости газа-окислителя и даже от размера отверстий, через которые газ барботирует в ре-акционгую массу. В промышленности концентрацию катализатора ограничивают величиной 0,2—0,3% (масс.) КМПО4 [около 0,10% (масс.) в пересчете па Мп]. При повышении температуры скорость процесс возрастает. Так, одинаковая глубина превращения (30— 35%) достигается при 80°С за ПО ч, при 100 С за 38 ч, при 110°С за 24 ч. С ростом температуры возможен переход реакции в диффу-зионнук область, вследствие чего большое значение приобретает гидродинамический режим в реакторе. [c.383]

    В 1сачестве типичного примера оформления жидкофазного гидрирования с суспендированным катализатором рассмотрим принципиальную технологическую схему производства выс лих жнрных спиртоЕ Сю— i8 из метиловых пли других эфиров синтетических жирных кислот, полученных окислением парафина (рис. 150). Реакция осуществляется при 30 МПа и 300 °С на медь-хромитном катализаторе, содержащем оксид бария (катализатор Адкинса). Небольшой тепловой эффект процесса обусловливает применение адиабатических реакторов с предварительным подогревом реагентов до нужной температуры. [c.523]

    Высшие жирные кислоты получают окислением парафина состава is—С44 в жидкой фазе в присутствии катализатора на основе соединений марганца. В качестве окисляюш его газа используется воздух, обогащенный кислородом до содержания более 21% об. Катализатор в виде водного раствора перманганата калия вводится непосредственно в нагретый парафин. После испарения воды катализатор восстанавливается до Мп02 2Н20, который распределяется в объеме парафина. Подобное дисперсное состояние катализатора позволяет обеспечить высокую скорость процесса окисления при температуре 110—120°С и атмосферном давлении. Чтобы избежать развития реакций глубокого окисления процесс продолжают не более 15—20 часов и прекращают при достижении глубины окисления парафина 30—35%. [c.288]

    Высшие жирные спирты получают аналогично ВЖК окислением парафина в жидкой фазе, но в иных условиях. Сырье окисляется при температуре 165—170 С азотокислородной смесью, содержапцей 3—5% кислорода, без катализатора. Чтобы избежать дальнейшего окисления образуюш ихся спиртов, процесс ведется в присутствии борной кислоты, дающ,ей со спиртами триалкилбораты (ЕО)зВ. Они легко выводятся из сферы реакции. В результате цепь окислительных превращений прерывается, обеспечивая селективность процесса. Борную кислоту в количестве 5% от массы парафина вводят в виде суспензии в парафине. Так как в этом случае процесс окисления протекает без разрыва углеродной цепи, то для получения спиртов с достаточно высокой молярной массой используют так называемые мягкие парафины Сю—Сго- Оксидат имеет состав ВЖС — 67%, ВЖК — 11,5%, низкомолекулярные продукты окисления — 12%, кубовый остаток 11,5%.  [c.291]

    При этом увеличение крепости кислоты, температуры и времени обработки ведет преимущественно к реакциям окисления. Процессы нитрации парафинов и нафтенов протекают только в случае обработки их азотной кислотой уменьшенной концентрации, при невысоких температурах. Наряду с этим, как показали С. С. Наметкин и С. С. Ниф-онтова на примере парафинов, нитрация последних осуществляется в соответствующих условиях наиболее легко при наличии в молекуле третичных углеродных атомов. Это позволило указанным авторам определить содержание изопарафиновых углеводородов в общей смеси твердых парафинов, выделенных из нефти. [c.140]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    А. И. Башкиров разработал хорошо управляемый процесс мягкого окисления высокомолекулярных парафинов, позволяющий получать в качестве основного продукта реакции предельные алифатические спирты, в которых преобладают соединения с таким же числом атомов углерода, как и у исходных парафинов [55, 56]. Процесс этот прошел опытно-промышленную проверку п в настоящее время внедряется в заводском масштабе. Особенность этого метода окисления парафииа состоит в том, что, регулируя процесс при помощи таких факторов, как температура,. скорость подачи газа-окислителя и концентрацию в нем кислорода, а также продолжительность окисления, удалось осуществить процесс жидкофазного окисления высокомолекулярных парафинов с высокой степенью избирательности. Процесс ведется нри температуре 165—170, продолжительность его 4 часа, подача газа-окислптеля (азото-кислород-ная смесь, содержащая 3% кислорода) 500 — 1000 л на 1 кг парафина в 1 час. В этих условиях достигается выход спиртов в 60% на взятый на окисление парафин. Основную часть продуктов окисления составляют вторичные спирты с тем же числом атомов углерода в молекуле, что и в исходном парафине. Процесс осупиютвляется по приводимой схеме 1. Если брать для окисления сравнительно широкие фракции парафинов ( is— Сзо), то удается получить широкую гамму высокомолекулярных алифатических спиртов предельного ряда. Области технического и бытового применения этих спиртов весьма обширны и многообразны. Спирты Си—Сго имеют особенно большое значение как исходные материалы для производства моющих и смачивающих средств, кото])ые до настоящего времени приготовлялись из пищевых жиров. Высокомолекулярные одноатомные [c.81]


Смотреть страницы где упоминается термин Температура процесса окисления парафино: [c.283]    [c.147]    [c.59]    [c.50]    [c.32]    [c.252]    [c.618]    [c.56]   
Синтетические жирные кислоты (1965) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Варламов и А. И. Ильина. Влияние температуры и катализатора на процесс жидкофазного окисления парафина до одноатомных жирных кислот

Окисление парафина

Процесс окисления парафина

Температура процесса окисления



© 2025 chem21.info Реклама на сайте