Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный потенциал водородная шкала

    Из выражений (7.44) и (7.45) видно, что потенциал водородного электрода определяется не только активностью водородных ионов, но и парциальным давлением газообразного водорода. Следовательно, водородный электрод (так же как и другие газовые электроды) более сложный, чем электроды первого или второго рода, потенциалы которых зависят непосредственно от активности одного сорта частиц. Согласно определ гнию условной шкалы электродных потенциалов стандартный потенциал водородного электрода н+ 112 температурах принято равным нулю, поэтому [c.166]


    Из общего уравнения для электродного потенциала (7.14) следует, что при заданной температуре потенциал любого электрода определяется составом системы и его стандартным потенциалом, значение которого не зависит от активностей участников электродной реакции и представляет собой константу, характерную для данного. электрода. В табл. 8.1 приведены значения стандартных потенциалов некоторых электродов по водородной шкале, а также соответствующие электродные реакции. [c.178]

    При пересчете на водородную шкалу электродных потенциалов, измеренных по отношению к другим, перечисленным выше электродам сравнения, следует к значениям измеренных потенциалов Е прибавить значение потенциала электрода сравнения по водородной шкале (Кк)обр. т. е. [c.175]

    Скачок потенциала на границе раздела фаз может быть равен нулю только тогда, когда g i, g2 и ga компенсируют друг друга. В настоящее время нет прямых экспериментальных и расчетных методов определения величин отдельных скачков потенциала на границе раздела фаз. Поэтому вопрос об условиях, при которых скачок потенциала обращается в нуль (так называемый абсолютный нуль потенциала), остается пока не разрешенным. Однако для решения электрохимических задач знание отдельных скачков потенциалов не обязательно. Достаточно пользоваться значениями электродных потенциалов, выраженными в условной, например, водородной шкале. [c.476]

    Стандартный потенциал представляет собой величину, характерную для данного электродного процесса, и зависит от температуры и природы растворителя. Значения стандартных потенциалов некоторых электродов по водородной шкале приведены в табл. 27. [c.478]

    В настояш,ее время для вычисления условных электродных потенциалов пользуются водородной шкалой, в которой при всех температурах за нуль выбран потенциал стандартного водородного электрода с активностью водородных ионов в растворе, равной единице, и давлением водорода, равном 1 атм. [c.276]

    Чтобы потенциал полуэлемента отвечал знаку электродного потенциала по водородной шкале, полуэлемент должен быть записан таким образом, чтобы вещества, находящиеся в растворе, были помещены слева, а вещество электрода — справа от вертикальной черты  [c.277]

    На рис. 4.3 изображен элемент с электродными пространствами, разделенными пористым стеклянным диском О. Предположим, что электрод В поляризован током, идущим от электрода О. Капилляр Ь (иногда называемый капилляром Луггина) электрода сравнения Я (или солевого мостика между электродами Я и В) расположен вблизи от поверхности В, что позволяет уменьшить ошибку измерения потенциала, вызванную омическим падением напряжения в электролите. Э. д. с. элемента В—определяют для каждого значения тока, измеряемого амперметром А с периодичностью достаточной для установления стабильного состояния. Поляризацию электрода В (катода или анода) измеряют в вольтах по отношению к электроду сравнения 7 при различных значениях плотности тока. Как правило, значения потенциалов приводят по стандартной водородной шкале. Этот метод назы- [c.49]


    Условный электродный потенциал или электродный потенциал по водородной шкале равен э. д. с. элемента, составленного из данного электрода и стандартного водородного электрода, т. е. Е = э. д. с. элемента [c.293]

    Электродный потенциал в условной водородной шкале можно выразить уравнением (XV. 1), предположив, что металл М[ — платина, насыщенная водородом при атмосферном давлении и погруженная в раствор с активностью ионов водорода, равной единице, а величина фы — вольт-потенциал, соответствующий водородному электроду. [c.415]

    Изменение энергии Гиббса, связанное с протеканием этой полуреакции при стандартных условиях, принимается равны.м нулю. В соответствии с этим и стандартный потенциал данного электродного процесса принят равным нулю. Все электродные потенциалы, приводимые в настоящей книге, а также в большинстве других современных изданий, выражены по этой, так называемой водородной шкале. [c.275]

    Потенциал водородного электрода воспроизводится с очень высокой точностью. Поэтому водородный электрод и принят в качестве эталона при создании шкалы электродных потенциа лов. [c.275]

    Значок О поставлен внизу, чтобы подчеркнуть, что в уравнении в общем случае используется стандартный потенциал данной окислительно-восстановительной электродной реакции относительно некоторого выбранного электрода сравнения (лишь по водородной шкале о= = ). [c.126]

    Разность потенциалов двух электродов в водородной шкале равна ЭДС элемента, составленного из этих электродов, и включает два электродных скачка потенциала (Аг з), определяемых уравнением (XXI. 12), и скачок потенциала металл 1 — металл 2, если диффузионный потенциал раствор 1 — раствор 2 пренебрежимо мал. [c.288]

    Для водородной шкалы потенциалов выражение (XXI. 12) переходит в важное уравнение Нернста для электродного потенциала  [c.288]

    А так как потенциал левого электрода условно принимается равным нулю, то ЭДС измеряемого элемента будет равна потенциалу правого электрода. Таким образом, электродный потенциал по водородной шкале Е — это ЭДС электрохимической системы, в которой справа расположен данный электрод, а слева — стандартный водородный электрод. [c.197]

    Электродное окисление или восстановление меди характеризуется высоким током обмена и поэтому электрохимическая поляризация при рафинировании меди невелика. Более заметную роль при электролизе играет концентрационная поляризация, однако, и она при применяющихся плотностях тока и циркуляции раствора не имеет большого значения, и как анод, так и катод работают при потенциалах, ненамного отличающихся от равновесных. В производственных условиях потенциал катода не бывает ниже -1-0,2 в, а потенциал анода — выше 0,5 в (по водородной шкале). В этих условиях побочные электродные процессы, связанные с выделением водорода на катоде и кислорода на аноде, невозможны. [c.12]

    Понятие электродный потенциал основано на различии в плотностях зарядов или энергии электронов в двух фазах. Избыток ионов или электронов на поверхности одной из фаз (твердой или жидкой) сообщает этой фазе внешний, или вольта-потенциал г]). Этот потенциал определяется работой, достаточной для медленного переноса единичного точечного электрического заряда из бесконечности в данную точку на поверхности фазы. Внутренний или гальва-ни-потенциал фазы ф выражается электрической работой, необходимой для перемещения единичного заряда из бесконечности, в вакууме в данную точку внутри фазы. Гальвани-потенциал представляет собой разность двух внутренних потенциалов между двумя точками в различных фазах, поэтому в противоположность вольта-потенциалу его нельзя определить экспериментально. Условились электродным потенциалом называть э. д. с. электрохимической цепи, в которой справа расположен исследуемый электрод, а слева нормальный водородный электрод. Совокупность потенциалов, установленных таким образом, составляет ряд нормальных потенциалов по водородной шкале (табл. 2). [c.12]

    Принятое правило требует, чтобы электростатический знак электродного потенциала (по отношению к водородному электроду) сохранялся в написании отдельных электродных потенциалов. Таким образом, металлы (элементы) более электроотрицательные, чем водород, должны по водородной шкале иметь знак минус, более электроположительные —знак плюс. [c.156]

    Поскольку потенциал стандартного электрода неизвестен, было принято, что нулевой потенциал имеет водородный электрод. "Стандартные электродные потенциалы металлов определяют исходя из нулевого потенциала водородного электрода. Таким образом, более активные металлы имеют более отрицательные электродные потенциалы. При температуре 25° С железо в растворе железистых ионов имеет стандартный электродный потенциал 0 = —0,440 В. Несмотря на то, что шкала потенциалов имеет важное теоретическое значение (см. вступление к гл. 2), она может давать неверную информацию не только из-за различия в температуре и концентрации раствора, но и потому, что эти растворы могут существенно отличаться от растворов или иной среды в реальных условиях. Поэтому в каждом конкретном случае потенциалы необходимо устанавливать опытным путем. [c.18]


    Потенциала в значение по водородной шкале. Электродные потенциалы, измеренные относительно насыщенного каломельного электрода, часто обозначают нас.к.э  [c.15]

    Электродным потенциалом является электродвижущая сила гальванической цепи, составленной из электрода, потенциал которого подлежит апределению, и нормального водородного электрода. Потенциалы, отсчитанные от уровня Н-электрода, выражаются по, водородной шкале . Например, для цепи [c.25]

    За потенциал электрода но водородной шкале электродных потенциалов принимают ЭДС электрохимической системы, составленной из данного электрода и стандартного водородного электрода (рис. 11) в соответствующих растворах. Установка для измерения нотенциала электрода но водородной шкале представлена па рис. 12. [c.42]

    В тех случаях, когда измеряется э. д. с. ячейки, вопрос об электроде сравнения отпадает, поскольку величина э. д. с. численно равна разности двух электродных потенциалов. Когда же с помощью уравнения Нернста рассчитывают электродные потенциалы, нельзя не учитывать потенциал электрода сравнения. Электродные потенциалы всегда рассматривают относительно электрода сравнения. В настоящее время для их вычисления применяют водородную шкалу, в которой за нуль принят потенциал стандартного водородного электрода (СВЭ) с активностью ионов водорода в растворе, равной единице, и давлением водорода, равном 0,1013 МПа. [c.107]

    Потенциал водородного электрода воспроизводится с очень вь сокой точностью. Поэтому водородный электрод н принят в качс ствё эталона при создании шкалы электродны.х.......потенциалов. [c.282]

    Скачки потенциала между фазами не поддаются экспериментальному определению. Поскольку э. д. с. электрохимической системы может быть легко измерена, то принято электродный потенциал считать равным э. д. с. цепи, составленной из водородного (слева) и данного электрода (справа). Водородный электрод при этом взят в стандартном состоянии (ан+ = 1) парциальное давление газа равно нормальному атмосферному давлению (1,013 10 Па) и его потенциал при любой температуре условно принят нулю. Электродные потенциалы при этом выражают в условной водородной шкале. Э. д. с. правильно разомкнутой цепи M Pt, HalLjM соответствует электродному потенциалу системы L M, для которого примем обозначение фьм  [c.469]

    Рассмотрим правила определения знаков электродных потенциалов и записи электродных реакций согласно международной кон-ненции, принятой в 1953 г. в Стокгольме. Чтобы определить, например, знак потенциала цинкового электрода по водородной шкале, [c.276]

    Для приведения электродных потенциалов к водородной шкале требуется рассчитать потенциал оксиднортутного электрода сравнения при данной концентрацпи электролита  [c.160]

    Измерить ыепосредствеЕно потенциал отдельного электрода нельзя. Приводимые в справочниках значения электродных потенциалов являются относительными. Они измерены относительно стандартного водородного электрода, потенциал которого условно принят равным нулю (Ф2ы+/Н2=0). В практической работе удобнее пользоваться другими стандартными электродами сравнения, имеющими постоянное значение электродного потенциала по отношению к стандартному водородному электроду. Чаще других применяются хлорсере бряный и каломельный электроды, электродные потенциалы которых в водородной шкале равны Фа с1/А0== = +0,222 В, Hgj i,/Hg = +0,268 В при заполне 1ии электрода [c.111]

    Пользуясь табличными значениями стандартных электродных потенциале по водородной шкале для одного из следующих гальванических элементов, составленных из электродов 1) 2п и Ag , 2) Аи и Ад 3) каломельного и хлор-сереб-ряного 4) каломельного и (—) Ре +, Ре + (-Ь) 5) 2п и Аи 6) С1г и 2п 7) хлор-серебряного и ТР+, Т1+ 8) Со и Сё 9) А1 и Хп 10) Сс1 и Ag И) Со и Аи 12) Ае и N1 13) Т1 и 2п 14) 5п н 2п 15) Аи и А1 16) Ag и Си 17) С<1 и N1 18) водородного и хлорного 19) водородн( ГО и медного 20) водородного и цинкового 21) кислородного и водородного 22) хингидронного и хлор-серебряного 23) хингидронного и водородного 24) водородного и хлор-серебряного 25) каломельного и серебряного, вычислить %. . Написать уравнения электродных реакций. Установить, знаки электродов. Написать уравнение реакции, протекающей п гальг.аническом элементе при его работе. Вычислить константу равновесия реакции при 25° С. Вычислить стандартную максимально полезную работу и изменение изобарно-изотермического потенциала в процессе реакции, протекающей в гальваническом элементе. [c.156]

    Характерно, что при всех подобных изменениях определяются ие абсолютные (Величины электродных потенциалов, а лишь их огносительные значения. Поэтому необходимо было условиться о том, относительно какого электрода измерять все потенциалы. Как уже отмечалось, в качестве стандартной шкалы потенциалов была принята водородная шкала, за нуль которой условно принимается потенциал нормального водородного электрода, т. е. [c.147]

    Чтобы установить относительный порядок или шкалу потенциалов отдельных металлов и таким образом сравнивать способность различных металлов и неметаллов к отдаче или захвату электронов, целесообразно выбрать некоторый стандартный электрод. Этот электрод можно скомбинировать с любым другим и условно принять, что его потенциал равен нулю. Таким электродом сравнения выбран водородный. Он состоит из платины, погруженной в раствор какой-либо кислоты и омываемой водо-)одом (рис. VIII.2). В этом полуэлементе идет реакция /2Н2(г)я Н+ + е. По аналогии с уравнением (Vni.il) для электродного потенциала определяемого этой реакцией, можно написать  [c.107]

    Электродным потенциалом является электроданжуш,ая сила галь-вамического элемента, составленного из двух электродов, потенциал одного из которых подлежит определению, а потенциал другого условно пртпшается за нуль. Таким электродом служит нормальный водородный электрод. Потенциалы, отсчитанные от этого электрода, выражаются по водородной шкале . [c.56]

    Если активность реагентов и продуктов равна единице, то второй член в правой части уравнения (1.14) равен нулю и = . Таким образом, стандартный электродный потенциал определяется как потенциал границы раздела при активности всех участников реакций, вовлекаемых в равновесие, равной единице. В случае водородного электрода равновесие соответствует уравнению (1.12), и при аи+ = рн = = и приобретает значение потенциала сравнения 0,00 В. Это дает возмолч-ность сравнивать все другие потенциалы по так называемой водородной шкале относительно нормального водородного электрода ( НВЭ). [c.18]

    Как правило, значение потенциала нормального водородного электрода принимают з нуль. Электродные потенциалы относительно этой нулевой точки считают приведенными к водородной шкале и обозначают ],. В табл. 1 приведены электродные потенциалы пс водородной шкале для некоторых наиболее распространешшх электродов сравнения. технической и экспериментальной работе обычно не проводят измерений относительнс нормального водородного электрода. Зная электродный потенциал электрода сравнение по водородной шкале, можно легко перевести измеренное значение электродног< [c.14]


Смотреть страницы где упоминается термин Электродный потенциал водородная шкала: [c.33]    [c.159]    [c.224]    [c.253]    [c.276]    [c.322]    [c.128]    [c.157]    [c.157]    [c.190]    [c.157]   
Определение pH теория и практика (1972) -- [ c.15 , c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал водородный

Потенциал электродный потенциал

Тау-шкала

Шкала водородная

Электродный потенциал

Электродный потенциал водородный



© 2025 chem21.info Реклама на сайте