Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольта химический

    Чтобы дальше оперировать с этим равенством, необходимо выразить потенциалы в одних единицах. Электрический потенциал обычно выражают в вольтах, химический — в Дж/моль или кал/моль. Найдем переход между этими единицами. [c.368]

    Необратимые электродные потенциалы нельзя вычислить с помощью уравнения Нернста (18) их можно определить только опытным путем. На их величину влияют различные факторы. По данным Г. В. Акимова, на величину необратимых потенциалов влияют химическая природа металлов— 4 В, состояние поверхности металла—десятые вольта, адсорбция атомов и молекул — сотые и десятые вольта, механические напряжения — до сотых вольта, химическая природа и концентрация раствора — десятые вольта и вольты, изменение температуры на 10° С —сотые вольта. [c.37]


    Поверхностное натяжение Те.мпература Потенциал (в вольтах) Химический потенциал [c.31]

    В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет ток электрических зарядов , или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор. [c.58]

    Результаты работы Вольта явились первым несомненным доказательством того, что между химическими реакциями и электричеством существует определенная связь. Однако это предположение было полностью разработано только в следующем столетии. [c.58]

    Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород. [c.58]

    ЛОМ между двумя разнородными металлами, либо гальвани-потен-циалами на стыке металлов и раствора, либо всеми тремя скачками потенциала. Иными словами, в одним случаях реализуется механизм образования э. д. с., постулированный физической теорией, в других — химической, в третьих — все скачки потенциала вносят свой вклад в величину э. д. с., т. е. в какой-то мере каждая из двух теорий отражает истинные соотношения. В этом состоит одно из решений так называемой проблемы Вольты, данное А. Н. Фрумкиным и основанное на концепции потенциалов нулевого заряда. [c.214]

    В процессе выравнивания электрохимических потенциалов электронов и реализуется превращение их энергии в электрическую. В. М. Новаковский провел серию экспериментов, подтвердивших это предположение. Такое решение спора между Гальвани и Вольтой, между представителями химической и физической теорий о месте локализации э. д. с. показывает, что ни те, ни другие не были правы. [c.227]


    Для количественной оценки химических процессов, происходящих под действием излучений, часто пользуются числом молекул О, реагирующих при поглощении 100 эв энергии излучения, или числом электрон-вольт, вызывающих превращение одной молекулы вещества, т. е. величиной ЮО/С. Величина О называется радиационно-химическим выходом. [c.268]

    Химическая природа металла. ..............Вольты (до 4 В) [c.178]

    Химическая природа и концентрация раствора.......Десятые вольта [c.179]

    Еще М. В. Ломоносов отмечал связь между электрическими явлениями и химическими процессами. Опыты Гальвани положили начало изучению электродвижущих сил А. Вольта, В. В. Петров, [c.414]

    Первый гальванический элемент был построен А. Вольта. Элемент состоял из медных и цинковых пластинок, между которыми помещались смоченные в уксусной кислоте прокладки из сукна. Возникновение электрического тока в нем сопровождается химическими превращениями на электродах. Так как электродный потенциал цинка [c.81]

    Для нормальной работы трехкомпонентного нейтрализатора необходима обратная связь между качеством отработавших газов и системой питания двигателя. Такая связь должна поддерживать уровень расхода воздуха примерно 14,6 кг на 1 кг сожженного бензина. При богатой смеси (а<1,0) резко увеличивается неполнота сгорания, а при бедной смеси (а>1,0), как сказано выше, возможно образование аммиака с появлением резкого запаха отработавших газов. Эту связь обеспечивает электронная схема регулирования с помощью так называемого кислородного датчика, измеряющего мгновенное содержание свободного кислорода в отработавших газах. Датчик монтируется на корпусе нейтрализатора и имеет слой оксида циркония или титана, покрытого платиной (датчик Ъ>). Такая электрохимическая ячейка реагирует на атомы кислорода и создает разность потенциалов до одного вольта. Эта разность потенциалов и служит управляющим сигналом, заставляющим электронный модуль изменять подачу топлива в двигатель до тех пор, пока в отработавших газах не останется свободного, то есть не вступившего в химическую реакцию, кислорода. Таким образом, автоматически поддерживается стехиометрический состав рабочей смеси во всех диапазонах нагрузок и частот вращения коленчатого вала двигателя. Такие трехкомпонентные нейтрализаторы при соответствующем финансировании могут производиться в России в количестве, необходимом для оснащения всех выпускаемых в стране автомобилей. [c.337]

    Для снятия вольт-амперной ха )актеристики, которая определяет работоспособность химического источника тока при изменении токовой нагрузки, требуется провести разряд элемента при плотности тока 10, 20, 40, 60, 80, 100 А/м . Продолжительность разряда при каждом токе 10 мин. [c.259]

    В 1800 г. Вольта изобрел первый химический источник тока, так называемый вольтов столб, который был собран из пластинок различных металлов, разделенных прослойками ткани, смоченной электролитом. Исследования привели Вольта к открытию контактной разности потенциалов, возникающей при соприкосновении металлов различной природы. В первых исследованиях в качестве чувствительного прибора для обнаружения малой разности потенциалов ученый использовал свеже-анатомированные мышцы лягушки. Этот случай является наглядным примером того, КПК биологические методы исследования нередко могут способствовать успешному развитию физики и других точных наук. [c.223]

    Химические сдвиги уровней атомного остова позволяют различать атомы одного и того же элемента в разном окружении в молекуле или каком-то образце. Эти сдвиги невелики (не превышают нескольких электрон-вольт) и перекрывание линий разных элементов мало вероятно, учитывая, что для большинства из них наблюдается несколько линий. В то же время возможны, однако, случайные совпадения пиков химически неэквивалентных атомов одного элемента, так как интервал значений химических сдвигов не столь велик (- 10 эВ), даже имея в виду минимальную ширину линии (0,2 эВ). [c.141]

    Ранее считали, что ЭДС гальванического элемента содержит лишь электродные скачки потенциалов 1 3 и г зз (химическая теория происхождения ЭДС гальванического элемента Нернста и Оствальда) или только контактную разность потенциалов г1 12 (физическая теория Вольта и Ленгмюра). Уравнение (12.2), впервые полученное А. Н. Фрумкиным, показывает, что ЭДС складывается из трех частей. [c.233]

    Электрохимия зародилась на рубеже ХУП и XIX столетий. Рождение этой науки связано с именами итальянских ученых Луиджи Галь-вани и Алессандро Вольта. Занимаясь изучением физиологических функций лягушки, Л. Гальвани в 1791 г. впервые случайно реализовал электрохимическую цепь. В 1800 г. Вольта создал первый химический источник тока — вольтов столб , который представлял собой электрохимическую цепь, не содержащую живых тканей. Эта первая электрохимическая цепь была построена из кружочков серебра и олова (или меди и цинка) и пористых прокладок, смоченных раствором соли. [c.7]

    Работы Нернста, казалось бы, привели к выводу, что контактная теория Вольта должна быть отброшена. Однако химическая теория, игнорировавшая возникновение разности потенциалов на границе соприкосновения двух металлов, сама вступала, таким образом, в противоречие с опытом, что и привело к ее пересмотру. Окончательное решение проблемы возникновения э. д. с., получившей название проблемы Вольта , было дано лишь на современном этапе развития электрохимии. [c.9]


    Ни физическая теория Вольта, ни химическая теория Нернста не могли дать непротиворечивого описания возникновения разности потенциалов на концах электрохимической цепи. В результате этого в электрохимии возникли две проблемы проблема Вольта и проблема абсолютного скачка потенциала. Прежде чем перейти к рассмотрению этих двух проблем, коротко остановимся на некоторых общих соотношениях и на методах определения вольта-потенциалов, а также работ выхода электронов ( ) и ионов ( Х< или из различных фаз. Работа выхода иона из раствора в воздух представляет собой реальную энергию сольватации. Она отличается от химического потенциала иона на работу преодоления поверхностного потенциала  [c.96]

    Ерли активированный атом входил в состав молекулы какого-либо соединения, то при обычной для реакции п, у) энергии атома отдачи (порядка десятков или даже сотен электрон-вольт) химическая связь в ряде случаев разрывается и радиоактивный атом оказывается свободным. Это позволяет отделить свободные радиоактивные атомы от атомов их стабильных изотопов, входящих в состав облучаемого нейтронами соединения, и получать препараты высокой удельной активности. [c.166]

    Эти и другие многочисленные исследования вызвали появление разнообразных теоретических концепций, имевших целью объяснить природу гальванического электричества. Еще до публикаций о вольтовом столбе немецкий ученый И. Риттер (1776—1ВЮ) высказал, в противовес контактной теории Вольта химическую теорию происхождения гальванического электричества . В 1798г., за два года до изобретения вольтова столба , Риттер указал, что ряд напряжений металлов, установленный Вольта, оказывается тем же самым, что и ряд металлов, расположенных в порядке увеличения их сродства к кислороду. Риттер установил далее, что нри сочетании двух металлов и воды (например, серебро и цинк) наблюдается быстрое окисление цинка. На основании такого рода опытов [c.69]

    Между прочим, в результате такого перехода электронов и происходит перенос заряда, и поэтому-то химические реакции могут а ужить источником электрического тока, как это показал Вольта более столетия назад (см. гл. 5). [c.159]

    Любая гальваническая цйяь в целом никогда не находится 1) равновесии. В необратимом элементе обычно возможно протекание химической реакции и при разомкнутой внешней цепи (реакция 2п + Н2504 в элементе Вольта). Но и обратимая (в указанном выше смысле) цепь в целом далека от термодинамического равновесия. Если такую цепь замкнуть на конечное сопротивление и предоставить самой себе, то во внешней цепи возникает электрический ток измеримой силы, т. е. цепь совершает работу, необратимо приближаясь к равновесию. Разомкнутая цепь только временно сохраняется почти неизменной. Например, в разомкнутом элементе Даниэля — Якоби происходит диффузия ионов Си2+ через раствор к цинковому электроду при соприкосновении цинкового электрода с ионами меди происходит необратимая (без совершения работы) реакция вытеснения ионов Сц2+ из раствора металлическим цинком, т. е. та же реакция, которая служит источником тока при работе с лемента. [c.519]

    Аналитические возможности метода вольтамперометрическо-го анализа очень широки. Метод используют для определения неорганических и органических соединений различного состава. При анализе органических соединений встречаются определенные затруднения, связанные с тем, что сравнительно небольшая часть (примерно 10%) органических соединений электрохимически активна, тем не менее, использование предварительных химических реакций (например окисления, нитрования, бромирова-ния) позволило разработать достаточное число методик вольт-амперометрического определения органических веществ различных классов, высокомолекулярных соединений, ПАВ, фармацевтических препаратов. [c.144]

    Искры статического электричества характеризуются незначительной силой тока (тысячные доли миллиампера), но весьма высокими напряжениями (тысячи и десятки тысяч вольт), поэтому они способны воспламенять многие горючие смеси. Так,, при движении химически чистого бензола по стальным трубам напряжение электрического поля (разность потенциалов) достигает 3600 В. в то время как для воспламенения паров бензола достаточно искры, образующейся при разности потенциалов 300 В. Электростатический разряд, образующийся при разности потенциалов 3000 В, может воспламенить почти все горючие газы, а прн 5000 В — большую часть горючих пылей. На разность потенциалов влияет расстояние между заряженными поверхностями. Так, если при расстоянии между поверхностями 10 см контактное напряжение равно 1 В, то при увеличении расстояния до 10 2 см напряжение возрастает до 1000 В, а при дальнейшем увеличении расстояния до 1 см оно может достигнуть десятков тысяч вольт. Рост потенциала определяется пробивным напряжением для данной среды (для воздуха пробивное напряжение составляет 3100 кВ/м). [c.112]

    Основы электрохимии были заломсены исследованиями по гальваническим элементам, электролизу и переносу тока в электролитах. Гальвани и Вольта в Италии создали в 1799 г. гальванический элемент. В. В. Петров в России (1802) открыл явление электрической дуги. Т. Гротгус в России в 1805 г. заложил основы теории электролиза. В 1800 г. Дэви выдвинул электрохимическую теорию взаимодействия веществ он широко применил электролиз для химических исследований. М. Фарадей, ученик Дэви, в 1833—1834 гг. сформулировал количественные законы электролиза. Б. С. Якоби в России, решая вопросы практического использования процесса электролиза, открыл в 1836 г. гальванопластику. [c.7]

    Так, полярность молекул изменяют путем превращения нх в менее полярные производные, что повьппает летучесть соединений В других случаях вводят хромофорные группы или электрофильные гf)yппиpoвки для последующего определения методами спектрофотометрии или вольт-амперометрии 114 . В принципе химическую модификацию определяемых соединений можно осуществлять на различных стадиях гфедстав-ленных вьппе схем  [c.236]

    В термодинамическом отношении электрохимия — это наука, изучающая взаимные превращения химической и электрической форм энергии. Но прежде чем прийти к такому заключению, этой науке необходимо было пройти долгий путь развития. Изобретение Вольта гальванического источника электрического тока лозволило лишь отказаться от прежней физиологической теории вопрос же [c.233]

    Рассчитанные по формуле (VII.2) значения химических сдвигов могут сильно отличаться (до десятков электрон-вольт) от наблюдаемых экспериментально. Существенное улучшение сходимости дает учет изменения энергии релаксации, т. е. дополнение уравнения (VII.2) членом АЕрел. [c.157]

    СРОДСТВО к ЭЛЕКТРОНУ — количество энергии, выделяюш,ееся при присоединении электрона к атому, молекуле или радикалу. С. к э. количественно выражается в электрон-вольтах. Значение величины С. к э. важно для понимания природы химической связи и процессов образования отрицательных ионов. Чем больше будет С. к э., тем легче атом присоединяет электрон. С. к э. в атомах металлов равно нулю, а в атомах неметаллов оно тем больше, чем ближе располс-жен элемент к инертному газу в периодической системе элементов Д. И. Менделеева. Поэтому в пределах периода неметаллические свойства усиливаются по мере приближения к концу периода (инертному газу). [c.235]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]


Смотреть страницы где упоминается термин Вольта химический: [c.212]    [c.213]    [c.227]    [c.14]    [c.332]    [c.15]    [c.79]    [c.278]    [c.197]    [c.119]    [c.142]    [c.226]    [c.8]    [c.8]   
Электрохимия растворов издание второе (1966) -- [ c.17 , c.30 , c.38 , c.51 , c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Вольта



© 2025 chem21.info Реклама на сайте