Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен пиролиз его

    Ацетилен является исходным сырьем для синтеза ряда важных продуктов. Перспективными методами получения ацетилена являются термоокислительный пиролиз природного газа и плазменный метод (из углеводородного сырья). Значительное количество ацетилена получают из карбида кальция. [c.20]

    Газы пиролиза из абсорбера 4, где ацетиленовые глеводороды поглощаются керосином, направляются на абсорбцию ацетилена аммиаком, проводимую в абсорбере 4. Синтез-газ, содержащий аммиак, подается в скруббер 9 на отмывку водой от ЫНз, Аммиак, содержа щий растворенный ацетилен, поступает в стабилизационную колонну 7, регенерируется здесь и вновь возвращается на абсорбцию. Выделение ацетилена происходит Б десорбере 8 прн подогреве паром. Далее ацетилен отмывается водой от аммиака и направляется на переработку. [c.17]


    Метод основан на том, что отходящие газы, образовавшиеся при пиролизе, сжигаются в смеси с воздухом для нагрева огнестойкого материала, подготовляя таким образом печь для пиролиза. Чтобы обеспечить регулярный и непрерывный поток пирогаза, установка состоит из очень многих печей. В каждый данный момент в одной половине печей идет пиролиз исходного сырья (газа), в то время как другая половина нечей нагревается за счет сжигания отопительного (отходящего) газа. Оборот каждой нечи 60 сек. В качестве отопительного газа используется отходящий газ (абгаз), получающийся при переработке газов пиролиза на ацетилен. Продукты сгорания выбрасываются в атмосферу. [c.96]

    Из таких углеводородов, как метап, этан и пропан, содержащихся в отходяш их газах гидрирования угля или в природном газе пиролизом при очень высоких температурах можно получить ацетилен. Проблема подвода большого количества тепла, необходимого для эндотермического процесса пиролиза, может решаться различными способами. Превращение метапа согласно уравнению [c.94]

    В производстве ацетилена термоокислительным пиролизом метана для предупреждения загазованности атмосферы ацетиленом [c.24]

    Второй экономический фактор при выборе сырья — стоимость превращений. Очевидно, что (по крайней мере для производства промежуточных продуктов) ацетилен пиролиза предпочитают эти-, лену хотя бы потому, что выделение чистого этилена очень дорого-с тоящий процесс. [c.391]

    Бертло отметил присутствие ацетилена в светильном газе [12], где его содержание не превышало 0,01%, а также в продуктах неполного сгорания органических соединений [13]. Бертло подвергал ацетилен пиролизу в трубке, нагретой до красного каления, и среди других продуктов получил бензол и стирол [14]. Он получил этилен восстановлением ацетиленида меди с помощью цинка и аммиака [7], а также из ацетилена с помощью аммиачного раствора хлорида меди (I) [15]. [c.16]

    Развитие процессов нефтехимического синтеза связано с широким использованием природных промышленных газов. Предельные углеводороды — метан, этан, нронан, бутан, изобутан, пентан применяют в качестве топлива, а также сырья для получения непредельных углеводородов (путем крекинга и пиролиза). Непредельные углеводороды в свою очередь являются сырьем для получения синтетических материалов. В промышленных масштабах перерабатываются газы этилен, пропилен, бутилены, дивинил, изонрен, ацетилен. [c.233]


    При пиролизе метана, этана и пропана ацетилен является прямым продуктом пиролиза этилена. Поэтому для указанных трех углеводоро- [c.87]

    Подвод больших количеств тепла, необходимых для осуществления эндотермической реакции пиролиза метана в ацетилен, возможен также путем сжигания части газа в чистом кислороде. При этом выделяется тепло в количестве, достаточном для расщепления оставшейся части углеводородов в ацетилен. [c.95]

    Процесс сходен с автотермическим пиролизом этапа в этилен (см. стр. 49). Газы, получаемые нри автотермическом пиролизе метана в ацетилен, имеют следующий состав (в % объемн.). [c.95]

    Все другие продукты пиролиза пропана (бутадиен, ацетилен, ароматика и др.) являются, несомненно, продуктами вторичного про исхождения. [c.31]

    Наиболее характерные случаи аварий вызваны повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.30]

    Наибольшую опасность представляют газовые выбросы в производстве ацетилена. Эти выбросы содержат ацетилен-концентрат, газы пиролиза или крекинга, синтез-газ. Даже аварийный отвод этих газов в атмосферу не допускается, что обусловлено не только их горючими и токсическими свойствами, но и недопустимостью проникновения ацетилена в блоки разделения воздуха, которые вместе с производствами ацетилена обычно входят в состав химического предприятия. [c.199]

    Окисление спиртов. Гидратация ацетиленов. Пиролиз карбоновых кислот. Оксосинтез. Ацилирование ароматических соединений. Озонирование алкенов. Гидролиз гемдигалогензаме-щенных. Восстановление хлорангидридов кислот. Синтезы с использованием реактивов Гриньяра 69 [c.4]

    Поведение к-бутана и изобутана аналогично реакциям пропана в том смысле, что они слишком быстро дают вторичные и третичные продукты реакции, чтобы можно было изучать начальную стадию разложения. Это имеет место при всех температурах свыше 1000° С, т. е. в тех случаях, когда ацетилен является основным продуктом. Отношение К/К для реакций образования ацетилена из пропилена или этилена примерно то же, что и при пиролизе пропана это указывает на то, что природа исходного реагента не имеет особенно большого влияния на скорость образования ацетилена, если исходный реагент является углеводородом, содержащим 3 или более атома углерода. В связи с этим получение ацетилена пз пропана и бутанов будет рассматриваться скорее с точки зрения выхода ацетилена, чем расхода исходного сырья. [c.63]

    Было показано, что ацетилен при пиролизе пропана получается в результате расщепления первичного продукта реакции — этилена и, возможно, пропилена. Представляется более вероятным, что перед образованием ацетилена пропилен также разлагается на этилен и метан. [c.87]

    Промышленное применение. Как было показано, ацетилен образуется при пиролизе углеводородов от метана до бутана . Следует под- [c.89]

    Свойства ацетиленсодержащих газов. При производ стве ацетилена описанными выше способами термоокислительного пиролиза и электрокрекинга метана природного газа образуются газовые смеси, содержащие ацетилен (см. табл. 2, стр. 11). Взрывчатые характеристики указанных газовых смесей экспериментально не изучены. Предельные давления распада ацетилена в этих смесях могут быть найдены в результате рассмотрения влияния отдельных разбавителей на величину предельного давления распада ацетилена (см. рис. 20. стр. 39). [c.42]

    В интервале температур от 800 до 1100° С при пиролизе бензола наблюдаются небольшие количества метана и следы ацетилена. Количество образующегося метана, примерно, такого же порядка, как и при нагревании углерода с водородом по-видимому, такая реакция, сопровождающая разложение бензола при высоких температурах, является основным источником образования метана. Интересно, что при нагревании так называемого аморфного углерода с водородом не получаются ароматические углеводороды, а вместо них благодаря реакции на ребрах кристаллов графита образуется метан. Можно считать, в свою очередь, что следы ацетилена, образующегося в процессе пиролиза бензола при высоких температурах, обусловлены скорее вторичным разложением метана, чем прямой диссоциацией бензола до ацетилена. Последняя реакция лишь предполагается некоторыми исследователями [4], однако она трудно доказуема. Ацетилен почти полностью разлагается при 750° С при этом получаются ароматические углеводороды, (в значительных количествах бензол) кокс и газы, среди которых обнаруживаются в убывающем порядке водород, метан и этилен [10]. Поскольку этилен является важным продуктом разложения ацетилена, а не самого бензола, то есть основания предполагать, что разложение бензола до ацетилена не относится к одной из основных реакций этого углеводорода. С другой стороны, [c.96]


    Отходящие газы окислительного пиролиза, содержащие 6 — 8% ацетилена, после очистки от сажи поступают на масляную абсорбцию, где отделяется часть высших гомологов ацетилена. Целевой ацетилен выделяется из газов абсорбцией селективными растворителями [8, 9]. [c.15]

    Избыточный метан при этой температуре разлагается с образованием ацетилена и ряда других продуктов (газы пиролиза). Ацетилен при 1500°С термодинамически неустойчив и в течение короткого времени может разложиться на углерод (сажу) и водород. Во избежание разложения образовавшегося ацетилена время пребывания газов пиролиза в реакционной зоне не должно превышать 0,01 сек. [c.9]

    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]

    Смесь этилена и ацетилена получается при пропускамии метана под давлением при температуре 700—1000° или даже выше над катализатором, состоящим КЗ солей щелочноземельных металлов, кремния, угля, или из окислов магния, бериллия, хрома, вольфрама, ванадия или урана i , а также над соединениями селена, теллура или таллия При высоких температурах главным продуктом реакции является ацетилен, если только газы быстро удаляются из зоны реакции. В другом патенте предложено получать ацетилен пиролизом метана при 950—2000° и при абсолютном или парциальном давлении метана, изменяющемся в пределах от 760 мм при 950° до 25 мм при 2000°. [c.169]

    Широко известен газохимический комплекс, созданный во Франции вокруг городов Лак, Парди и Мэн на базе месторождения природного газа. Получаемые здесь этилен пиролизом этана и ацетилен пиролизом природного газа служат сырьем для производств по выработке винилхлорида, бутадиена, винилацетата, нитрона, полистирола, сополимеров. Вырабатываются аммиак, метанол, удобрения, сера. [c.150]

    Линии I — кислород II — остаточный газ пиролиза III — нефтяная фракция IV — вода V — масло VI — остаточный газ VII — смола VIII — тяжелые ароматические углеводороды IX —легкие ароматические углеводороды X — окись углерода XI — чистый этилен XII — чистый ацетилен. [c.98]

    НОГО сырья, в частности метана. Сущность процесса окислительного пиролиза заключается в следующем. Подогретый метан и кислород подаются через горелку специальной конструкции в зону пиролиза реактора, где за счет сгорания части метана температура поднимается до 1400—1500° С. Благодаря большой объемной скорости газовой смеси (время пребывания газа в зоне реакции составляет 0,005 сек) при разложении метана образуются ацетилен, окись углерода и водород. Непосредственно после зоны пиролиза в реакторе расположена зона закалки, в которой реакционные газы резко охлаждаются внрыскиважием воды из форсунок. Быстрое охлаждение предотвращает разложение нестойкого при высоких температурах ацетилена. [c.15]

    Дальнейшая обработка производится описанными выше методами (гиперсорбция и т. д.). Соотношение ацетилена и этилена в смеси зависит в первую очередь от температуры пиролиза и может варьировать в широких пределах. Оно не зависит от того, как происходит сгорание — в атмосфере чистого кислорода или в воздухе. Выход ацетилен-этиленовой смеси составляет при пиролизе пропана hjih газолина в среднем 55% вес. или более, считая на исходный продукт, независимо от того, каково соотношение ацетилена и этилена в смеси, которое может изменяться от 1 2 до 4 1. [c.98]

    При установке и эксплуатации мокрых газгольдеров, предна-. значенных для ацетилена и ацетиленсодержащих газов, необходимо руководствоваться Правилами и нормами техники безопасности и промышленной санитарии для проектирования и эксплуатации производств ацетилена окислительным пиролизом метана и электрокрекингом метана для целей переработки, а также производства ацетилена из карбида кальция для газосварочных работ . Выпускать ацетилен из газгольдера в атмосферу при отключении газгольдера на ремонт или профилактический осмотр не допускается. При отключении газгольдера находящиеся в нем газы должны быть выбраны до минимального объема, после чего газгольдер и подключенные к нему ацетиленопроводы необходимо заполнить природным газом. Смесь природного газа, содержащую ацетилен, нужно направить для сжигания на свечу, после чего газгольдер и ацетиленопроводы необходимо продуть азотом. Не прекращая азотную продувку, при открытой центральной трубе (свече) на колоколе нужно слить из резервуара. воду. Для обеспечения безопасной работы мокрого газгольдера, содержащего ацетилен или ацетиленсодержащие смеси, необходимо обеспечить непрерывную продувку азотом сливных баков, соединенных воздушниками с атмосферой. [c.230]

    Современный интерес к применению ацетплена стимулируется развитием процессов его получения из углеводородов низкого молекулярного веса. Все эти процессы включают некаталитический пиролиз углеводородов при высоких температурах в качество начальной стадии. Ацетилен получается в виде относительно разбавленной газовой смеси и концентрируется и очищается при последующих операциях. [c.57]

    В табл. 3 содеря атся данные по пиролизу этапа и этилена. При разложении этана образование этилена происходит гораздо быстрее, чем превращение этнлена в ацетилен. Так1гм образом, происходит накопление этилена в условиях, приближающихся к равновесию с этаном и водо- [c.61]

    При температурах между 650 и 700° С и при времени контакта больше, чем 0,25 сек., ацетилен не является существенным продуктом пиролиза этана. В условиях такого долгого времени контакта ацетилен, но-види-мому, остается в некоторой равновесной концентрации порядка двух процентов на объем отходящего газа. Водород, метан и жидкие продукты являются основными, отложение кокса нри этом начинается с 850° С [c.77]

    Изложенное выше относится к тем случаям, когда ацетилен является осВовным целевым продуктом. Как было показано, образование ацетилена при пиролизе этана непосредственно связано с разложением этилена  [c.78]

    Пиролиз этилена до ацетилена. Молера и Стэббс [50] нашли, что термическое разложение этилена в интервале температур от 593 до 743° С и давлении 250 мм рт. ст. является реакцией первого порядка, а при более высоких давлениях — реакцией второго порядка. Ацетилен не является основным продуктом реакции при температурах ниже 800° С и, по-видимому, вообще не образуется при температурах ниже 600° С [8, 15, 38]. Нет сомнения в том, что при более низких температурах и более высоких давлениях полимеризация этилена преобладает над его разложением. При более высоких температурах полимеризация его проявляется на самое короткое время в виде уменьшения объема газа. Вскоре начинает преобладать процесс разложения этилена, полностью маскирующий реакцию полимеризации. Разложение преобладает при температурах выше 800° С. При 1400° С не наблюдается уменьшения объема даже на самое короткое время [93]. [c.81]

    В промышленности широко используется пиролиз нефтяных газов для производства этилена, пропилена. Бурное развитие добычи и ириме-иения природного газа в пашей стране открывает широкрш перспективы для иснользования метана в качестве исходного сырья для переработки его в цеииые химические продукт . и, в частности, в ацетилен. [c.286]

    В ацетилене, получаемом методами термоокисли тельного пиролиза и электрокрекинга метана, содержатся различные ацетиленовые и некоторые диеновые углеводороды, характеристика которых . 2э дана в табл. 7 (стр. 45). [c.46]

    Для оценки возможности образования взрывоопасных концентраций рассмотрим условия взрываемости смеси С2Н2, О2 и СН4 (см. рис. 23,6), которая в какой-то мере характеризует состав газов пиролиза. Взрыв данной смеси при содержании около 10% ацетилена возможен только в том случае, если в ней находится не менее 40% кислорода. Практически это невозможно, так как при таком содержании кислорода в газах пиролиза ацетилен отсутствует. [c.58]


Смотреть страницы где упоминается термин Ацетилен пиролиз его: [c.4]    [c.4]    [c.11]    [c.274]    [c.78]    [c.95]    [c.97]    [c.31]    [c.155]    [c.25]    [c.30]    [c.214]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.51 , c.96 , c.196 , c.200 ]




ПОИСК







© 2024 chem21.info Реклама на сайте