Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромил-катион

    Получение гидроксида хрома (III) и его переход в катионные [Сг (ОН2)б1 и анионные [Сг (0Н)в1 " комплексы можно выразить следующим суммарным уравнением  [c.559]

    Очистка сточных вод электродиализом основана на разделении под действием электродвижущей силы анионов и катионов. В электродиализаторе имеются анионо- и катионообменные мембраны. Метод широко применяется для опреснения соленых йод. С его помощью очищают сточные воды от соединений фтора и хрома при степени обессоливания 75—80 %, от радиоактивных загрязнений— при снижении активности на 99%. Срок службы мембраны зависит от загрязненности сточных вод взвешенными частицами и составляет 2—5 лет. [c.495]


    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]

    Катион и анион многозарядны. Подавляющее число солей, относящихся к зтой группе, весьма малорастворимы и вследствие этого их обменное взаимодействие с водой практически незначительно. Исключение составляют сульфиды некоторых трехвалентных металлов, например алюминия и хрома, которые в водном растворе полностью и необратимо гидролизуются с образованием основания и кислоты  [c.138]

    В тех случаях, когда в процессе электролиза используется активный (расходуемый) анод, то последний будет окисляться в ходе электролиза и переходить в раствор в виде катионов. Энергия электрического тока при этом расходуется на перенос металла с анода на катод. Данный процесс широко используется при рафинировании (очистке) металлов. Так, на этом принципе основано, в частности, получение чистой меди из загрязненной. В раствор медного купороса погружают пластины из очищенной и неочищенной меди. Пластины соединяют с источником постоянного тока таким образом, чтобы первая из них (очищенная медь) была отрицательным электродом (катод), а вторая — положительным (анод). В результате пластина из неочищенной меди растворяется и ионы меди из раствора осаждаются на катоде. При этом примесь остается в растворе или оседает на дно ванны. Этот же принцип используется для защиты металлов от коррозии путем нанесения на защищаемое изделие тонких слоев хрома или никеля. [c.85]

    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    По своему химическому поведению молибден и вольфрам гораздо сильнее отличаются от хрома, чем между собой. Например, в отличие от хрома степень окисления -f 3 для молибдена и вольфрама реализуется лишь в небольшом числе катионных комплексов. Реакции хрома(П1) во многом сходны с реакциями железа (П1) и алюминия. В степени окисления -f6 хром несколько напоминает ванадий (4-5). [c.618]


    Реакция (13.14) используется для установления титра тиосульфата по количеству выделившегося иода, для определения хрома в сталях и других материалах с предварительным окислением хрома до Сг (VI), а также для определения катионов, образующих малорастворимые хроматы (РЬ , Ва + и др.). [c.282]

    Зная ионное состояние некоторых комплексных соединений трехвалентных хрома и железа в растворах при различных pH среды, можно определить оптимальные условия разделения смесей катионов железа и хрома при помощи анио Митов. Так, в нейтральной и слабокислой среде разделение железа и хрома на анионитах в присутствии трилона Б не достигается. Его можно осуществить в сильно аммиачной среде. В присутствии трилона Б и аммиака смесь содержит трилонат железа (анион) и аммиакат хрома (катион). Железо задерживается на колонках с анионитами АН-2Ф, ЭДЭ-10 в ОН-форме, а хром проходит в фильтрат. Железо элюируется 10%-ным раствором серной кислоты [89]. [c.146]

    Когда из продуктов щелочного гидролиза неочищенного бромида после удаления гидроокиси пентафенилхрома был выделен в виде иодида слегка растворимый в воде трифенил-хром -катион [38, 40, 52], появился третий ряд соединений — новый валентный ряд. Как и его предшественник, иодид трифе-нилхрома "(СбНб)зСг" I [74] проявлял соответствующий одному [c.442]

    При методе с применением перекиси водорода для разделения на подгруппы используют действие избытка щелочи в присутствии перекиси водорода (или перекиси натрия). При этом катионы А1+++ и Zn++ превращаются также в анионы А 0 и ZnO. и вместе с ионами rO . образующимися при окислении rO перекисью водорода, остаются в растворе. Остальные же катионы выпадают в осадок в виде Fe(OH)g, МпО(ОН)2, Со(ОН)з и NiiOH),, При ацетатном методе (применимом только в отсутствие хрома) катионы А1+++ и Fe+++ путем кипячения с, Hg OONa осаждаются в виде основных ацетатов СНзС00(0Н)оА1 и СНзСОО(ОН)5ре, а остальные катионы остаются в растворе. [c.321]

    При ацетатном методе (применимом только в отсутствие хрома) катионы А " и Ре - осаждают кипячением с Hg OONa в виде основных ацетатов А1(ОН)2СНзСОО и Pe(0H)j H3 00, титан —в виде Ti(0H)4, а остальные катионы остаются в растворе. [c.329]

    Названия красителей по рациональной советской номенклатуре, основанной на технической классификации, складываются следующим образом. Первым словом дается групповое обозначение — Прямой, Кислотный, Сернистый, Кубовый, Дисперсный, Активный, Основный, Лак, Пигмент, Кубозоль, Тиозоль, Спирторастворимый, Жирорастворимый и т. д. Для ряда красителей в качестве первого слова в названиях применяются групповые обозначения Хромовый— для кислотных протравных хромирующихся красителей для шерсти Однохромовый — для красителей, крашение которыми можно производить одновременно с обработкой солями хрома Катионный — для красителей, применяемых для крашения поли-акрилонитрила Тиоиндиго — для кубовых индигоидных красителей Лаковый —для кислотных красителей, предназначенных для получения лаков Люминофор — для красителей, обладающих флуоресценцией Белофор — для флуоресцентных (оптических) отбеливателей. [c.45]

    Помимо нейтрально] формы бис-ареновые соединения хрома могут находиться и окисленной, так называемой катонной форме. Имеется несколько сообщений о термическом разложении соединений хрома катионного тина, кисих , как нмдида [348], рейнеката [341) , ртутного комплекса [350, 351]. [c.249]

    Окисление бис-(бензол)хрома в нейтральной среде приводит к образованию сложной смеси хроматов и бихроматов бис(бензол)хром-катиона [3, 89]. Были получены более подробные сведения о продуктах автоо1Шслеиия эяда бисареновых комплексов хрома и молибдена в углеводородах [81—84] (табл. 1). [c.9]

    В основе бихроматометрии лежат реакции окисления бихромат-ионом. Окисляющее действие его обусловлено переходом анионов гО . содержащих хром в степени окисления +6, в катионы Сг +  [c.392]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Потеря атсмов электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов — к увеличемию. Поэтому радиус положительно заряженного иона (катиона) всегда меньше., а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего элек-тронейтрального атома. Так, радиус атома калия составляет 0,236 нм, а раднус иона К " — 0,133 нм радиусы атома хлора и иопа С - соотпетственно равны 0,099 и 0,181 им. При этом раднус нона тем сильной отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов Сг + и Сг + составляют, соответственно, 0,127, 0,083 и 0,064 нм. [c.100]


    Рассмотрим окись хрома, СГ2О3. В объеме твердой СГ2О3 катионы Сг " , октаэдрически окруженные шестью анионами (структура алунда), физически идентичны центральным катионам октаэдрических Сг " -комплексов в растворе. Но на поверхности кристалла могут появляться ионы хрома с различными зарядами и координационным числом, образующиеся путем следующего механизма. [c.25]

    При адсорбции монооксида углерода на исходном образце наблюдаются полосы поглощегия 2150, 2173, 2193 и 2202 см" , соответствующие СО, адсорбированному на гидроксильных группах, катионах Мд " , А1 + и Сг +, соответственно. После адсорбции сероводорода картина адсорбции СО существенно меняется. Практически полностью исчезают полосы поглощения 2193 и 2202 см , соответствующие СО, адсорбированному на льюисовских кислотных центрах (ЛКЦ) ЛР+ и Сг и резко уменьшается количество бренстедовских кислотных центров (БКЦ) (2150 см ), тогда как количество адсорбированного СО на катионах Мд + увеличивается. Это может происходить благодаря разрушению структуры шпинели МдСгр с образованием, например, сульфатов или сульфитов хрома и освобождением дополнительного количества свободных катионов магния (рис. 4.17). [c.120]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Эта схема подтверждается присутствием н-бутиленов в реакционных газах и сходством состава продуктов, полученных в случае этилена и н-бутиленов в присутствии цеолита СаМеУ (табл. 3). Активность проявляли катионы никеля, хрома и кобальта. Результаты, данные в табл. 3 и 4, получены с использованием никеля. [c.85]

    Соли серной кислоты — сульфаты — находят разнообразное применение. Особенно интересны двойные сульфаты — квасцы (например, K[A1(S04)2]). Кристаллы квасцов построены так, что один из металлов (трехвалентные хром, алюминий, железо) образует вместе с кислотным отстатком комплексный анион [Me(S04)2] , занимающий определенное место в кристаллической решетке. При растворении в воде квасцы диссоциируют на одно- и трехвалентные катионы и суль-фат-анионы, т. е. ведут себя как растворы смеси сульфатов  [c.117]

    Известны соединения меди в степенях окисления +1, +2 и +3. Последние, однако, малочисленны и ограничиваются простми и сложными оксидами и фторидами. Гораздо более распространены соединения меди (I) и меди (II). Соединения одновалентной меди менее устойчивы и похожи на аналогичные соединения серебра и золота (I). Соли двухвалентной меди по свойствам гораздо ближе к солям других двухзарядпых катионов переходных металлов. Эти особенности меди неразрывно связаны с ее электронным строением. Основное состояние атома меди 3< 4з обусловлено устойчивостью заполненной а -оболочки (ср. с атомом хрома), однако первое возбу кденное состояние 3d 4s превышает основное по энергии всего на 1,4 эВ (около 125 кДж/моль). Поэтому в химических соединениях проявляются в одинаковой мере оба состояния, дающие начало двум рядам соединений меди (I) и (II). [c.159]

    С [26]. Диффузия ионов МР наружу происходит по катионным вакансиям в где О < -< 1, а внедрение повышает концентрацию катионных вакансий. В хромоникелевых сплавах, содержащих >40 % Сг, диффузия наружу происходит в окалинах, состоящих из СГаЗд. Внедрение ионов Ni в Сг Зз-окалину снижает концентрацию катионных вакансий, поэтому скорость реакции становится ниже скорости для чистого хрома. При промежуточных составах окалина гетерогенначИ состоит из сульфидов никеля и хрома, причем в сплавах Сг — N1, содержащих >20 % Сг, скорость реакции взаимодействия с серой ниже, чем для чистого хрома. [c.198]

    По Фишеру, прн действии на бензол прн повышенной температуре безводного треххлористого хрома образуется окрашенный в желт1> й цвет катион дибензолхрома [Сг(СбНб)д]+, из которого могут быть получены различные соли. При их восстановлении получается дибензолхром (СсНг,)2Сг, который перегоняется в высоком вакууме при 150° и образует растворимые в бензоле темно-коричневые кристаллы его дипольный момент равен 0. [c.194]

    Однако если окись углерода хемосорбирована на окиси хрома при комнатной температуре, то она десорбируется в виде СОг [90]. В этом случае, по-видимому, протекает более сложная поверхностная реакция. Молекула окиси углерода, вероятно, соединяется с двумя поверхностными кислородными ионами с образованием иона СОз и одновременно восстанавливаются несколько катионов, валентность которых снижается. Протекание этой реакции на поверхности окиси хрома можно, по-видимому, изобразить следуюидим образом  [c.62]

    Опыт 1. Образование катионных аквокомплексов и анионных гидроксокомплексов хрома (III). Получите гидроксид хрома (III) и исследуйте его кислотно-основные свойства. Об ыкцште наблюдаемое. [c.112]

    Для хрома и его аналогов наиболее типичны производные высщей степени окисления, во многом сходные с соответствующими соединениями серы. Соединения хрома (VI) отличаются неустойчивостью в растворах и являются сильными окислителями. При этом они чаще всего восстанавливаются до анионных или катионных комплексов хрома (Ш). Хотя хром располагается в четной группе, наиболее устойчивой его степенью окисления является Ч-З. Это связано с тем, что соединения хрома (III) являются, как правило, комплексными с координационным числом 6 и октаэдрической пространственной конфигурацией расположения лигандов. В этом случае три Зй-электрона иона Сг + равномерно заселяют трижды вырожденные несвязывающие МО комплекса (см. рис. 13,5 д). Возникающая стабилизация системы за счет суммарного спина 3 V2 = V2 (по правилу Хунда) в этом случае больше, чем если бы степень окисления хрома была + 2, -f-4 и т. д. [c.511]


Смотреть страницы где упоминается термин Хромил-катион: [c.290]    [c.446]    [c.219]    [c.225]    [c.74]    [c.409]    [c.532]    [c.435]    [c.66]    [c.133]    [c.134]    [c.69]    [c.86]    [c.147]    [c.238]    [c.112]    [c.99]    [c.614]   
Неорганическая химия (1989) -- [ c.342 ]

Общая и неорганическая химия 1997 (1997) -- [ c.454 ]

Общая и неорганическая химия (2004) -- [ c.454 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смеси катионов алюминия и хрома (и железа)

Аналитические реакции катионов третьей группы (ионы алюминия, хрома, железа, марганца и цинка)

Катион хрома

Реакции катиона хрома Сг

Третья аналитическая группа катионов (ионы алюминия, хрома, железа, марганца и цинка)

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран

Хром, атомный и катионные радиус

Хром, атомный и катионные радиус валентные состояния

Хром, атомный и катионные радиус ионизационные потенциалы

Хром, атомный и катионные радиус маскирующие агенты

Хром, атомный и катионные радиус реагенты для определения

Хром, атомный и катионные радиус электронное строение

реакция с метилиодидом соль с катионом бис циклопентадиенил хрома



© 2025 chem21.info Реклама на сайте