Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория межфазной турбулентности

    В соответствии с теорией межфазной турбулентности предполагается, что на границе раздела фаз имеются интенсивные турбулентные пульсации, которые приводят к возникновению вихревого движения, сопровождающегося взаимным проникновением вихрей-в обе фазы. Количественный учет межфазной турбулентности может быть произведен с помощью безразмерного фактора гидродинамического состояния двухфазной системы. На основе теории межфазной турбулентности получены выражения локальных коэффициентов массоотдачи для различных гидродинамических режимов движения потоков, отличающиеся показателем степени нри коэффициенте диффузии, который изменяется от нуля в режиме развитой турбулентности до 2/3 в ламинарном режиме. Кроме того, вводятся факторы, зависящие от гидродинамической структуры и физических характеристик фаз. [c.344]


    Теория межфазной турбулентности. Наиболее общую форму уравнений массопередачи с учетом взаимодействия потоков фаз можно получить, используя принцип межфазной турбулентности, согласно которому на свободных поверхностях раздела не происходит гашение турбулентных пульсаций [10]. [c.155]

    Скорость процесса хемосорбции определяется как скоростью химической реакции, так и величиной коэффициента массопередачи, который может быть рассчитан по одной из рассмотренных выше теорий межфазного переноса (пленочная теория, теория обновления поверхности контакта фаз, теория межфазной турбулентности и т. д.). [c.166]

    На основании теории межфазной турбулентности получено уравнение для расчета гидравлического сопротивления провальных дырчатых решеток  [c.200]

    Минимальная эквивалентная высота насадки достигается в режиме эмульгирования после точки инверсии. Численное значение может быть найдено из общих соображений, лежащих в основе теории межфазной турбулентности. [c.529]

    На основании теории межфазной турбулентности, в результате обработки экспериментальных данных получен явный вид обобщенного уравнения для расчета гидравлического сопротивления провальных дырчатых и щелевых решеток, имеющих оптимальную толщину 4—5 мм  [c.134]

    Ф у р ме р 10. В,, А к с е л ь р о д Ю. В., Д и л ьм а н В. В., Л а ш а к о в А. Л., Теор. основы хим. технол., 5, 134 (1971). Экспериментальное исследование межфазной турбулентности при абсорбции, осложненной химической реакцией. [c.276]

    По Льюису, согласованность обоих коэффициентов (экспериментального п расчетного) свидетельствует о том, что межфазное сопротивление по сравнению с сопротивлением обеих фаз исчезающе мало может быть опущено. Для этих систем механизм перемещения молекул, принятый двухпленочной теорией, может считаться справедливым. Массопередача становится энергичнее под влиянием спонтанной межфазной турбулентности и замедляется, если на поверхности фаз происходят медленные химические реакции, которые создают дополнительные сопротивления массопередаче [уравнения (1-80), (1-81)]. [c.82]

    Обычно полуэмпирическая концепция локальности основывается на определении отношения коэффициента турбулентного обмена к величине кинематической вязкости. Способы разделения области интегрирования и определения коэффициента турбулентного обмена у поверхности раздела фаз определяют специфику той или иной теории межфазного переноса. [c.43]

    Рассмотрены топологические структуры межфазных явлений в гетерофазных ФХС. Обсуждены особенности топологического описания теплового, механического и покомпонентного равновесия фаз. Дано преставление в виде топологических структур связи ряда моделей межфазного переноса двухпленочной модели, модели обновления поверхности контакта фаз, модели диффузионного пограничного слоя, модели развитой межфазной турбулентности. Показано, что диаграммы межфазного переноса с учетом условий равновесия в рамках существующих теорий структурно изоморфны и различаются между собой лишь значениями параметра проводимости и формой его зависимости от гидродинамической обстановки в системе. [c.182]


    Теория свободной турбулентности, т. е. турбулентности, развивающейся в случае движения потоков без фиксированных границ, была развита на основе воззрений Прандтля и Кармана [117] рядом исследований. Тэйлор и другие исследователи, чтобы объяснить некоторые явления, наблюдаемые при свободной турбулентности, разработали теорию переноса вихрей. При поперечном переносе вихрей, возникающих в турбулентном потоке, появляются турбулентные касательные напряжения. Эти представления применительно к процессам массопередачи получили развитие в работах В. В. Кафарова [67], посвященных так называемой межфазной турбулентности. [c.16]

    Таким образом, только когда В а = Ов, пенетрационная и пленочная теории дают идентичные результаты. В обоих методах анализа хода процесса коэффициент массоотдачи со стороны жидкой фазы не зависит от концентрации компонента А на межфазной поверхности и концентрации компонента В в турбулентной зоне жидкости. Для определения значения этого коэффициента при проектировании указанные величины должны быть известны. [c.254]

    Впервые систематизирован материал по анализу процессов массопередачи на основе представлений о межфазной турбулентности и развитой свободной турбулентности, являющихся следствием теории вихрей. На наш взгляд, использование представлений о межфазной турбулентности и развитой свободной турбулентности позволит расширить и углубить решение многих теоретических и практических вопросов массопередачи. [c.5]

    Такая физическая модель межфазной массопередачи имеет ряд недостатков, и вместо нее были выдвинуты другие представления, больше приближающиеся к реальности (теории непрерывно обновляющейся поверхности, межфазной турбулентности и др.). Однако двухпленочная модель является более простой и дает в общем правильное описание процесса, поэтому мы в дальнейшем будем пользоваться ею. [c.193]

    В. В. Кафаров [51, 67, 205] выдвинул ряд положений, являющихся базой теории межфазного массопереноса, основанной на представлениях о межфазной турбулентности. На границе раздела фаз, течение которых не ограничивается твердыми стенками, возникает особый гидродинамический режим, характеризующийся образованием вихрей последние пронизывают пограничные слои и проникают вглубь фазовых потоков. Такой режим определяется как режим развитой свободной турбулентности. В этом режиме (режиме эмульгирования или турбулентной пены) двухфазная си-тема представляет собой недвижный комплекс газожидкостных вихрей со значительным развитием межфазной поверхности и быстрым ее обновлением. Газожидкостной системе присущи основные особенности свободной турбулентности — отсутствие гашения турбулентных пульсаций, наличие нормальных составляющих скорости, отсутствие заметного влияния молекулярных характеристик на массоперенос. Таким образом, межфазная поверхность сама становится источником турбулентности и масса переносится через поверхность раздела фаз вихрями с осями, перпендикулярными направлению движения потоков. Анализируя условия, в которых возникает межфазная турбулентность, В. В. Кафаров указывает [51], что вихри на межфазной поверхности возникают при различающихся по величине и направлению скоростях движения фазовых потоков, в частности в тарельчатых колоннах создается благоприятная обстановка для вихреобразования на границе раздела фаз. В наших экспериментах на тарельчатых контактных устройствах различного типа — это важное обстоятельство следует подчеркнуть еще раз — во всем исследованном диапазоне нагрузок по жидкости и газу наблюдался режим развитой свободной турбулентности (см. гл. ГУ, стр. 114). [c.155]

    Основная задача теории состоит в определении степени затухания и коэффициентов турбулентного обмена вблизи межфазной поверхности, и без решения этой задачи невозможно создать точные аналитические методы расчета процес- сов турбулентного обмена. Величина п является функцией пульсационного поля скоростей вблизи межфазной границы. Поэтому для определения п необходимо знать детальную картину течения внутри вязкого подслоя. [c.177]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]


    Основной вопрос теории массопередачи заключается в том, что происходит на межфазной поверхности. При этом необходимо выявить впд механизма переноса вещества через межфазную поверхность — молекулярный (молекулярная диффузия) или турбулентный (вихревая диффузия . [c.236]

    Эта теория, предложенная Уитменом [81], предполагает, что по обе стороны поверхности соприкосновения фаз (межфазной поверхности) в турбулентном процессе образуются устойчивые ламЕ-нарные пленки жидкости и, следовательно, вихри турбулентного [c.291]

    Недостатком пленочной теории является игнорирование гидродинамической обстановки вблизи межфазной поверхности, вклада молекулярной и турбулентной диффузии, роли физических и геометрических параметров системы. Величину б можно рассматривать как толщину некоторой воображаемой пленки, эквивалентной по сопротивлению переходу вещества из данной фазы к межфазной поверхности в конкретных условиях процесса массообмена. Так как на практике не оправдывается линейная зависимость М О, то не исключено, что сама величина б является функцией не только упомянутых факторов, но также и коэффициента молекулярной диффузии О. Непосредственное измерение [c.443]

    Попытка объяснить ускорение массопереноса увеличением площади межфазной поверхности за счет наличия на ней ряби также не подтверждается экспериментальными данными [3, 207]. Эти данные показывают, что даже для режимов, соответствующих турбулентному течению, увеличение площади межфазной поверхности вследствие наличия на ней волн является незначительным (не превышает 3 %). В то же время увеличение коэффициента массопереноса в сравнении с оценками, даваемыми пенетрационной теорией, достигает 100%. [c.117]

    Существует иной подход к решению аналогичных задач переноса, использующий концепцию деформационной турбулентности [226], Этот подход состоит в замене волновой межфазной поверхности плоскостью, но при этом диффузионные характеристики растворенного вещества оказываются зависящими от волновых параметров и координат. Оценка этих характеристик производится в соответствии с развитой в работе [227] теорией. [c.122]

    Размеры капель. Распад жидкости на капли в условиях пульсационного движения, сопровождаемый их коалесценцией, является сложным процессом, причем теоретически возможно лишь качественное и упрощенное описание механизма указанных явлений. Однако и в этих условиях приближенно применима теория локальной изотропной турбулентности, согласно которой максимальный устойчивый размер капли (сг/рс) е > (где о — межфазное натяжение, Н/м Рс — плотность сплошной фазы, кг/м е — диссипация энергии в единицу времени на единицу массы жидкости. Вт/кг). [c.319]

    При турбулентном режиме движения жидкости для больших значений Рг зависимость Ыи от Рг обусловлена законом убывания коэффициента турбулентного переноса с приближением к межфазной поверхности. Этот закон из чисто теоретических соображений едва ли может быть в настоящее время установлен с достоверностью. Поэтому более целесообразен иной путь — экспериментальное определение зависимости Ми от Рг и установление на этой основе зависимости коэффициента турбулентного переноса от расстояния до межфазной поверхности. Это даст возможность перейти к разработке количественной теории диффузионных процессов. Все сказанное в равной мере относится и к процессам теплоотдачи при Рг 1 вследствие аналогии, существующей между турбулентным переносом вещества и тепла. [c.62]

    Простая двухпленочная теория, описанная выше, исходит из допущения, что на межфазной границе фазы находятся в равновесии, т. е., что на границе раздела фаз отсутствует диффузионное сопротивление [см. уравнения (5.39) и (5.41)], Для некоторых систем, однако, существуют значительные пограничные сопротивления, как, например, в случае жидкостей, содержащих поверхностно-активные вещества, которые обладают тенденцией концентрироваться на поверхности. Кроме того, диффузия растворенного вещества иногда вызывает появление поверхностной турбулентности, которая не связана с турбулентностью в объеме перемещающейся среды. Такая турбулентность приводит к повышению скорости переноса и равносильна возникновению отрицательного пограничного сопротивления. В последние годы эти эффекты подверглись широкому изучению, однако и по сей день отсутствует возможность их количественного описания. [c.208]

    Линейное уравнение (3.48) с достаточной точностью описывает зависимость потока компонента через фаницу раздела фаз от движущей силы (рис. 3.10). Из фафика видно, что феноменологический коэффициент массопередачи зависит от скорости паровой фазы (w), В соответствии с теорией межфазной турбулентности для коэффициента массопередачи будет справедлива зависимость L( 2)k  [c.145]

    Остальные теории дают зависимость коэффициентов массоотдачи от различных факторов. Согласно теории проницания и обновления поверхности Хигби [6], кт 0 < . По Кишиневскому [7] (модифицированная теория проницания и обновления поверхности), (0+,0т)° . Пратт [8] также считает, что к определяется только диффузионными факторами. У Кафарова [9] по теории межфазной турбулентности коэффициент массоотдачи в условиях развитой свободной турбулентности не зависит от молекулярной диффузии и вязкости, а целиком определяется турбулентной диффузией к В ), где р изменяется в зависимости от режима турбулентности. [c.97]

    Более близка к практическому приложению теория В. В. Ка-фарова [70], основанная на представлениях о межфазной турбулентности. В. В. Кафаров считает двухпленочную теорию необоснованной и неспособной объяснить явления массообмена в условиях развитой турбулентности в двухфазных системах. Турбулентность, которая возникает на поверхности раздела фаз при их движении, носит особый характер. В этих системах развивающееся вихревое движение приводит к взаимному проникновению вихрей одной фазы в другую. При этом турбулентные пульсации не гасятся. Вследствие этого образуется паро(газо)-жидкостная эмульсия, представляющая подвижную систему газо-жидкостных вихрей — этот режим Кафаров называет режимом эмульгирования. [c.51]

    Шервуд и Вей [16] и Серль и Гордон [17] провели эксперименты с мгновенными реакциями в сосудах с перемешиванием, однако из-за межфазной турбулентности не смогли теоретически обосновать полученные результаты. Чтобы изучить и проанализировать одномерную, первоначально неподвижную систему в процессе диффузии, а также определить влияние межфазных явлений на скорость переноса и величину зоны реакции, Хо и Ранц использовали оптический метод, в том числе шлировую фотографию. Они изучали необратимую реакцию второго порядка и дали теоретический анализ положения зоны реакции. Эксперименты с мгновенными реакциями в одномерных неподвижных системах показали, что исчезающе тонкая реакционная зона перемещается внутрь той или иной фазы, подтверждая теоретические предсказания в отсутствие межфазной турбулентности перемещение зоны соответствует теоретическим предположениям (для этого случая теория предсказывает произвольное увеличение скорости переноса, вызванного реакцией). При наличии межфазной турбулентности зона реакции движется быстрее, чем предсказано теорией. [c.364]

    Развитая теория может быть существенной для явления спонтанного возникновения межфазной "турбулентности" [4-9]. Многообещающее поле приложений ее методов составляют процессы, связанные с биологическими мембранами. Теория может дать информацию о клеточных движениях и об основных деформациях поверхностей клеток, обусловленных хдалическими или электрическими сигналами в процессах хемотаксического движения, фагоцитоза и слияния клеток [Ю-13]. Первый шаг в этом направлении сделан в посхледней части этой работы, посвященной очень грубым моделям биологических поверхностей. [c.46]

    Наибольщее распространение в литературе получила модель обновления поверхности, предложенная Кишиневским [16, 17] и Данквертсом [18]. В основе этой модели лежит представление о непрерывной замене элементов жидкости (или газа), прилегающих к межфазной поверхности, новыми элементами, поступающими на поверхность вследствие турбулентного перемешивания. В течение промежутков времени, когда элемент пребывает на поверхности, процесс массопередачн описывается, как и в теории Хигби, уравнением нестационарной диффузии в полубесконечной неподвижной" среде. Для характеристики интенсивности обновления вводится понятие среднего временл пребывания элементов жидкости на поверхности Дт. Первоначально такая картина была предложена -для описания массообмена в системах жидкость — газ, однако в дальнейшем ее стали использовать и для описания других систем, в частности систем жидкость — твердая стенка [19]. [c.173]

    Артор не совсем точно излагает основные концепции, лежащие в основе модели Кинга, а также выводы в отношении характера зависимости от В а, вытекающие из нее. В основу модели положена возможность одновременного действия двух механизмов переноса вещества от свободной поверхности вглубь жидкости в турбулентном потоке. Один из них соответствует постепенному затуханию коэффициентов турбулентного обмена с приближением к межфазной границе. Этот механизм Кинг считает относящимся к вихрям сравнительно небольшого масштаба. Другой механизм связан с обновлением поверхности сравнительно крупными вихрями (их размер должен быть больше толщины слоя, в котором происходит затухание по первому механизму и где соответственно происходит основное изменение концентрации). Таким образом, модель Кинга, по существу, включает представления теорий пограничного диффузионного слоя (см. выше) и обновления поверхности (см. ниже). Что касается возможного характера зависимости от О а, то на основании собственных экспериментальных данных, полученных в ячейке с мешалкой и в насадочной колонне и анализа результатов, полученных другими исследователями, Кинг приходит к выводу о более узком интервале практически возможного изменения показателя степени при Оа от 0,5 до 0,75. Прим. пер. [c.102]

    Согласно этой теории, впервые предложенной Хигби [18], при интерпретации массопередачи от газа к жидкости межфазная поверхность не является статической (неизменной) величиной, а складывается на стороне жидкости из элементов, каждый из кото-рых находится в контакте с газовой фазой только в течение короткого, но одинакового периода времени, после чего проникает в глубь жидкой фазы. Его место занимает новый элемент, прибывший из ядра жидкой фазы. Следовательно, на стороне жидкости нет постоянной ламинарной пленки, а турбулентность жидкости распространяется до самой межфазной поверхности. Таким образом, перенос массы осуществляется путем неустано вившейся молекулярной диффузии от межфазной поверхности к элементу жидкости во время контакта т. Этот процесс описывается дифференциальным уравнением неустановившейся диффузии  [c.293]

    Недостатком пленочной теории является игнорирование гидродинамической обстановки вблизи межфазной поверхности, Поберхноста вклада молекулярной и турбулентной / раздела сраз диффузии, роли физических и геомет [c.312]

    Основным вопросом теории массопередачи является вопрос о том, что происходит на межфазной поверхности — поверхности рчздела фаз и поэтому анализировать каждую теорию массопередачи необходимо с решения вопроса о том, каким принимается состояние межфазной поверхности. Важнейшим вопросом при этом является вопрос о механизме переноса вещества через межфазную поверхность — молекулярном (молекулярная диффузия) и турбулентном (вихревая диффузия). [c.308]

    Основной вопрос теории массопередачи заключается в том, что происходит на межфазной поверхности. При этом необходимо не только выявить вид механизма переноса вещества через межфазную поверхность — молекулярный (молекулярная диффузия) или турбулентный (вихревая диффузия), но и выявить всю совокупность взаимодействий микро- и макроэффектов. [c.187]

    Данквертц и независимо от него Кишеневский развили модель проницания Хигби, введя понятие об обновлении поверхности контакта фаз. Согласно этой теории пограничные пленки или слои отсутствуют, а межфазная поверхность непрерывно обновляется свежей жидкостью. Массопередача осуществляется не только молекулярной, но и турбулентной диффузией. В качестве кинетической характеристики принимается коэффициент эффективной диффузии Д, равный сумме коэффициентов молекулярной и турбулентной диффузий, т. е. [c.193]

    Коалесценция пузырьков происходит вследствие турбулентной и орто-кинетической коагуляции, причем последняя является результатом столкновений пузырьков разных размеров, двигающихся с различными скоростями. Б.И.Броунштейн и А.С.Железняк в своей монографии приводят теоретическое описание процесса коалесценции в предположении, что каждое соударение воздушных пузырьков заканчивается слиянием. Однако, как показывает опыт, это предположение справедливо далеко не всегда. В связи с тем, что неслияние газовых пузырьков чаще наблюдается при наличии процесса массопередачи, П.С.Прохоровым и В.Н.Яшиным,а затем А.Сми-том с сотрудниками была выдвинута градиентная теория неслияния пузырьков, объясняющая повьииение давления в водяном зазоре между пузырьками возникновением на их поверхности градиентов межфазного натяжения. Имеются, однако, экспериментальные данные, которые не укладываются в рамки чисто механической теории неслияния газовых пузырьков. Окончательные причины неслияния пузырьков при их близком к соударению взаимном расположении еще не выяснены. [c.12]

    Во многих промышленных процессах, зависящих от массообмена, имеют дело с одним или с несколькими потоками жидкости, движущимися турбулентно. В то же время существующая теория турбулентности совершенно недостаточна для того, чтобы служить фундаментом для разработки практически полезной теории переноса массы на межфазной границе. Трудности описания турбулентности представляют собой главный камень преткновения в создании теоретической основы массопередачи между фазами. Дж. Бэтчелор, известный авторитет в области механики жидкостей и газов, еще в 1957 г. писал, что современная технология нуждается в помощи при описании и анализе турбулентных течений и она не может ждать, пока ученые поймут тайны турбулентности [2]. Вероятно, подобная ситуация сохраняется и сейчас. Вследствие этого существующие корреляции данных, относящихся к скоростям переноса, по необходимости являются в значительной мере эмпирическими. Они оказываются исключительно полезными при проектировании технологического оборудования, хотя требуемые для этого сведения и корреляции очень часто отсутствуют или позволяют лишь приблизительно оценить размеры массообменных аппаратов и режимы их работы. Тем не менее инженер-конструктор должен применять имеющиеся средства в тесных рамках как ограничений по равновесиям, так и экономики. [c.15]


Смотреть страницы где упоминается термин Теория межфазной турбулентности: [c.98]    [c.174]    [c.301]    [c.304]    [c.174]    [c.176]    [c.184]    [c.106]   
Основы массопередачи (1962) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные



© 2025 chem21.info Реклама на сайте