Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение при гетероатоме

    Есть основания утверждать, что, поскольку гетероатом является донором двух р-электронов, положительный конец диполя находится на нем, а диеновая часть молекулы обогащается электронами. Это является одной из причин большей реакционной способности (по сравнению с бензолом) фурана, пиррола и тиофена в реакциях электрофильного замещения. Кроме того, так как у всех пятичленных ароматических гетероциклов энергия сопряжения меньше, чем у бензола, образование ими а-комплексов с электрофильными реагентами происходит легче. [c.510]


    Химические свойства. Пиридин весьма инертен к реакциям электрофильного замещения и в этом отношении напоминает нитробензол. Электрофильный заместитель направляется в -положение к гетероатому (см. гл. 5)  [c.543]

    В т. 3 рассматриваются реакции ароматического нуклеофильного и свободно-радикального замещения, а также реакции присоединения к кратным связям углерод—углерод и углерод—гетероатом. [c.4]

    Факторы, оказывающие влияние на реакционную способность кратных связей углерод — гетероатом в реакциях присоединения, аналогичны факторам, действующим в тетраэдрическом механизме нуклеофильного замещения [8]. Если А и (или) В — электронодонорные группы, скорость реакций снижается, а электроноакцепторные заместители способствуют ускорению реакций. Это означает, что альдегиды более реакционноспособны, чем кетоны. Арильные группы оказываются несколько дезактивирующими по сравнению с алкильными вследствие резонанса в молекуле субстрата, который невозможен при переходе к интермедиату  [c.323]

    Пользуясь таблицами, следует помнить, что при замещении атома углерода на гетероатом энтальпийный вклад термохимической группы не изменяется  [c.338]

    ПИРИДИН. Электрофильные агенты реагируют с пиридином так же, как с нитробензолом, т. е. весьма неохотно . Замещение в пиридине происходит в очень жестких условиях и идет по СЗ гетероатом азота ведет себя при атол как л1е гл-ориентирующая дезактивирующая нитрогруппа. [c.635]

    Нуклеофильное замещение может протекать по двум основным механизмам — бимолекулярному (ассоциативному) и моно-молекулярному (диссоциативному). При бимолекулярном механизме атакующая частица постепенно вытесняет уходящую группу. Образование новой и разрыв старой связи происходят одновременно (синхронно). При мономолекулярном механизме сначала происходит медленная ионизация связи углерод — гетероатом в субстрате, а затем быстрая атака реагентом по атому углерода в образовавшейся положительно заряженной частице. [c.172]

    Пятичленные гетероциклические соедннения можно рассматривать как продукт замещения в бензольном цикле одной группировки СН=СН на гетероатом с неподеленной парой электронов (М, О, 5, 5е, Те, Р). Ниже рассмотрены соединения с гетероатомами N. [c.658]

    Следовательно, ароматичность этих гетероциклов зависит от двух электронов, которые гетероатом предоставляет в я-систему. В случае пиррола атом азота лишается пары электронов, характерной для органических аминов. Поэтому пиррол может образовывать соли только за счет потери ароматического характера и является очень слабым основанием (р/Са 0,4). Замещение пир-рольного цикла приводит к усилению основных свойств, и некоторые замещенные пирролы дают относительно устойчивые хлоргид-раты [2]. Сам пиррол в сильной кислоте протонируется по циклическому атому углерода и полимеризуется в этих условиях, вероятно, путем взаимодействия непротонированной молекулы пиррола с сопряженной кислотой [3]. [c.99]


    В случае фурана, пиррола и тиофена имеющийся заместитель играет решающую роль в процессе дальнейшего замещения, однако гетероатом также оказывает значительное влияние на ориентацию вводимого заместителя. Усложняющим фактором является то, что атомы кислорода, азота и серы существенно отличаются по а-направляющему эффекту. Эти вопросы рассматриваются ниже. [c.117]

    Г. Нуклеофильные агенты могут атаковать углеродный атом, находящийся в а- или -положении по отношению к гетероатому (см. 255—257). Атакуется также углеродный атом карбонильной группы а- и 7-пиридонов (как в 255), причем реакция протекает с полным удалением карбонильного атома кислорода и ароматизацией. Эти реакции, в которые вступают также а- н -(-пироны, подробно рассматриваются как реакции замещения на стр. 91. Продукты присоединения (255), полученные при взаимодействии а-пи-ронов с карбонильным атомом углерода, могут реагировать далее с раскрытием цикла в реакциях с гидроксильными ионами, аммиаком и аминами (стр. 63—65). Кумарины реагируют с у-угле-родным атомом, с цианид-ионом и карбанионами, давая продукты присоединения типа (257), которые стабилизуются путем присоединения протона, т. е. по типу присоединения Михаэля (см. стр. 68—69). [c.50]

    Электрофильные агенты склонны атаковать гетероатомы, имеющие неподеленные электронные пары. Если гетероатом соединен простой связью, то в результате подобных атак образуются ониевые соединения, которые в дальнейшем способны стабилизироваться путем катионоидного отрыва заместителя у гетероатома результирующий процесс соответствует электрофильному замещению при этом гетероатоме. [c.231]

    При изучении химических превращений тиофенов следует учитывать, что во многих случаях сера и —СН=СН— бензольного кольца идентичны по химическому поведению. Гетероатом дополняет я-элект-ронную систему до ароматического секстета, а также определяет направленность замещения в тиофеновом кольце а-поло-жения на несколько порядков активнее р-положений. Наиболее важны для тиофенов реакции электрофильного замещения и металлирования, дающие начало процес- [c.179]

    Масс-спектрометрия азотсодержащих ароматических гетероциклов. При рассмотрении фрагментации азотсодержащих ароматических гетероциклов под действием электронного удара полезно исходить из допущения, что при ионизации молекулы положительный заряд в М+ локализован на определенном атоме (или участке) с наименьшим потенциалом ионизации, откуда электрон удаляется легче. Фиксация заряда в определенном месте заметно понижает энергию связи, что способствует ее разрыву. В азотистых гетероциклических соединениях ловушкой положительного заряда в обычно является гетероатом, поэтому для различных нефункционально замещенных ароматических гетероциклов первая стадия распада М , как правило, связана с выбросом нейтральной частицы ИСК. Рассмотрим масс-спектры некоторых соединений. [c.543]

    Как и в бензоле, двойные связи пиридина замаскированы , в пиридине также имеется ароматическая шестерка подвижных л-электронов. Подобно бензолу, пиридин устойчив к окислению, в тупает в реакции электрофильного замещения. Гетероатом азот придает пиридину свойства основания. Поэтому в отличие от бензола пиридин образует соли с кислотами  [c.129]

    Несимметричная группа —N=N—NH—, называемая диазоамино в соответствии с Правилами номенклатуры органических соединений ИЮПАК 3, в данной номенклатуре полимеров носит название азоимино . В случае одинаковых гетероатомов при составлении названия сначала определяют кратчайшее расстояние и направление. При выборе между одинаковыми путями высшим по старшинству гетероатомом является максимально замещенный гетероатом порядок старшинства заместителей задается правилом 2.4.2  [c.581]

    Электрофильные реагенты атакуют в фуране, пирроле и тиофене преимущественно а-положение по отношению к гетероатому если же оба а-положения в исходном соединении заняты, замещение идет в -положение. [c.510]

    При катионной полимеризации возможен новый тип взаимодействия активного центра с макромолекулой — передача цепи с разрывом, который представляет собой реакцию замещения в основной цепи полимера. Передача цепи с разрывом интенсивно протекает при полимеризации циклических ацеталей, альдегидов, оксидов, лактамов, лактонов (У-гетероатом)  [c.281]

    Явление сопряжения существенно изменяет физические и химиче ские свойства гетероциклического соединения. Так, вследствие сопря жения дипольный момент фурана значительно меньше, чем родствен кого ему тетрагидрофурана (2,3 10" Кл м против 5,6 10 Кл-м) В химическом отношении ароматические гетероциклы подобны бензо лу и более склонны к реакциям замещения, а не присоединения Вместе с тем благодаря наличию гетероатомов они имеют некоторую специфику. В частности, вследствие высокой электроотрицательности атомов О, 8, N равномерность распределения электронной плотности в кольце нарупгается, а связи гетероатом — углерод и молекула в целом поляризуются. [c.316]

    Возможно и дальнейшее замещение СН-групп. Так как вводимый гетероатом обладает электроноакцепторным, а имеющийся — электронодонорным действием, их эффекты частично компенсируются и это приводит к некоторой стабилизации соединений, увеличению степени ароматичности. Она проявляется, например, в большей выравненностн связей. [c.25]


    Как видно из указанных примеров, металлирование простых эфиров приводит обычно к получению орто-замещенных продуктов без примеси ета- и 1пара-изомеров. Аиало гичио этому металлирование дибенз-тиофена I и 9-этилкарбазола II посредством н-бутиллития также ведет к замещению в орто-положение по отношению к гетероатому [c.333]

    Многие замещенные ароматические соединения взаимодействуют с бутиллитием без осложнений. При этом характерной особенностью реакции является то, что металлирование осуществляется в с ртс>-положение по отношению к группировкам, содержащим гетероатом, таким как ОК, ЫК2, СН2ОН, СНгНКг, СОМНК, СОМКг и др.  [c.229]

    Химические свойства. Для 3- и 4-членных Г. с. характерна легкость раскрытия напряженного цикла. 5- и 6-членные ненасыщ. гетероциклы (наиб, многочисл. тип Г.с.), замкнутая сопряженная система связей к-рых включает (4п 2) п-электронов, обладают ароматич. характером (правило Хюккеля) и иаз. гетероароматич. соединениями. Для них, как и для бензоидных ароматич. соед., наиб, характерны р-ции замещения. При этом гетероатом играет роль внутренней ф-ции, определяющей ориентацию, а также активирующее или дезактивирующее влияние иа кольцо к действию разл. реагентов. [c.543]

    Получают Ф. ковденсацией циклопентадиена с альдегидами и кетонами в присуг. оснований. Ддя синтеза Ф., замещенных у атома С-б на группу, содержащую гетероатом, используют иминиевые или карбоксониевые соли, напр.  [c.211]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Изоэлектронное замещение карбанионного атома углерода на гетероатом дает гораздо более устойчивые соединения, и такие 5,5-бициклические ароматические системы заслуживают большого внимания. В этих соединениях атом серы или кислорода может бьггь включен в полностью сопряженную систему, в противоположность 5,6-производным, где может быть использован только атом азота. Из-за многообразия таких систем трудно сказать что-то обшее об их реакционной способности, однако электрофильное замещение, которое идет по любому из циклов, наиболее широко представлено в литературе, наряду с редким упоминанием о реакциях нуклеофильного замещения и литиирования. Некоторые типичные реакции приведены ниже [69,70]  [c.620]

    Для определения стереодескриптора в спиросоединениях типа В, произвольно выбирают одно из колец в качестве старшего и приписывают более замещенной цепи (или гетероатому) в этом кольце приоритет а, а менее замещенной — с, тогда как в младшем кольце, соответственно Ь и d. Далее определяют стереодескриптор в соответствии с обычными правилами, а спироатом рассматривают как хиральный центр  [c.274]

    Нуклеофильное замещение. Наличие дополнительной ( циональной группы способствует поляризации связи углер гетероатом и увеличивает ее реакционную способность. На мер, а-галогенкарбоновые кислоты обладают повышенной ционной способностью в реакциях нуклеофильного замещ по сравнению с обычными алкилгалогеиидами. Это связа влиянием группы —СООН, что ведет к увеличению на а-] родном атоме эффективного положительного заряда. [c.236]

    Шестичленные гетероциклические соединения можно рассматривать как бензол, в котором один атом углерода замещен на гетероатом (N, О, S). В этой главе рассмотрены пиридин, пирилиевые соли, некоторые их производные и бензологи (хинолин, изохинолин). [c.686]

    Соединения алкиллития металлируют дибензофуран, дибензо-тнофен н Ы-алкилкарбазолы (в порядке возрастания степени трудности), образуя соединения типа (398) замещение происходит в орто-положение к гетероатому, как и следовало ожидать по аналогии с рядом бензола. [c.186]

    Кратные связи углерод — гетероатом способны к реакциям электрофильного присоединения, аналогичным тем, которые наблюдаются в случае кратных связей между атомами углерода. Атака гетвроатома кислотным реагентом приводит к образованию карбокатиона, который обычно стабилизируется путем второй. электрофильной атаки. Примером этого является первая стадия ацетализации карбонильных производных спиртами в присутствии ионов Н (а), протекающая с замещением гидроксила по схеме АэОк (см. стр. 239). [c.273]


Смотреть страницы где упоминается термин Замещение при гетероатоме: [c.354]    [c.220]    [c.323]    [c.219]    [c.18]    [c.393]    [c.196]    [c.326]    [c.252]    [c.36]    [c.7]    [c.224]    [c.87]    [c.41]    [c.51]    [c.96]    [c.185]   
Курс теоретических основ органической химии (1975) -- [ c.4 , c.5 , c.8 , c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Гетероатомы



© 2025 chem21.info Реклама на сайте