Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид хрома плавления

    С т а л и н и т—это лучший отечественный твердый сплав. Различают сталинит № 1 и № 2. Оба представляют собой зернообразную массу. В состав сталинита № 1 входят хром (16—20%), марганец (13—17%), углерод (8—10%), кремний (не более 3%) (остальное—железо). Основа твердости—карбиды хрома, марганца и железа. Сталинит № 2 основой имеет карбиды титана, что придает ему исключительно большую твердость. Температура плавления его 2850—2900° С. По твердости он приближается к алмазу. [c.394]


    Эти недостатки устраняют, вводя в матрицу хром, титан или алюминий. Наиболее перспективными уплотнителями композиционных материалов являются монокристаллические нитевидные кристаллы тугоплавких оксидов, нитридов, карбидов и боридов. Последние характеризуются уникально высокой прочностью, обусловленной совершенством их структуры и поверхности. В настоящее время разработаны волокнистые композиционные материалы с непрерывными поликристаллическими волокнами бора, углерода и тугоплавких соединений. Оказалось, что у этих волокон модуль упругости, плотность и температура плавления мало отличаются от таковых у нитевидных кристаллов. Однако они значительно уступают им в прочности. Например, прочность одного из наиболее жаропрочных алюминиевых сплавов САП-3 составляет при 500 С 6,4-10 Н/м , а алюминия, упрочненного борным волокном, достигает 1,2-10 Н/м . [c.155]

    Для некоторых марок нержавеющей стали этот недостаток, связанный с образованием карбидов, удалось уменьшить небольшим изменением состава. В стали типа 3041 и 3161, например концентрация углерода не превышает 0,03%. В них вводятся дополнительные металлы, обладающие более высоким сродством к углероду, чем хром. Например, стабилизированные стали типа 321 и 347 содержат 0,4% Т1 и 0,8%ЫЬ соответственно. Но если обычные стали 304 и 31о легко свариваются без заполнителя, это не всегда удается сделать для стабилизированных сталей. Титан, например, легко окисляется и в результате уходит из зоны плавления. Следовательно, для сварки нержавеющей стали марки 321 необходимо использовать заполнители. [c.252]

    Кобальт используют в больших количествах при получении твердых сталей типа стеллитов (содержат кобальт и хром в соотношении 3 1, устойчивы к истиранию, к действию химических реагентов, обладают высокой температурой плавления), быстрорежущих сталей (для резцов, сверл и др.), сверхтвердых металлокерамических сплавов, образованных из карбидов W, Ti, Мо, Та, Ni, V, сцементированных кобальтом, сплавов с постоянными магнитными свойствами, кислотостойких, огнеупорных (до температуры 900°) сплавов и др. Сплавы кобальта находят очень широкое применение. Из них изготовляют катоды, электрические сопротивления, зубные протезы они применяются в автомобилестроении, турбореактивной, турбокомпрессорной и ракетной технике и т. д. [c.550]

    Жаропрочные сплавы на основе никеля и кобальта обычно защищают от высокотемпературной коррозии диффузионными алюминиевыми покрытиями, обычно наносимыми методом пакетирования [2, 35]. Для таких ответственных деталей, как лопатки турбин, процесс диффузионного алюминирования (алитирования) должен быть тщательно подобран применительно к специфическим особенностям сплава [36, 37]. Покрытие должно состоять из алюминидов никеля или хрома (модифицированных хромом и другими компонентами сплава) с высокой температурой плавления. Следует избегать образования алюминидов с высоким содержанием алюминия, которые имеют пониженную точку плавления. Таким образом, скорость поглощения алюминия должна ограничиваться. Структура покрытий является сложной под слоем алюмини-да часто образуются карбиды [38, 39]. [c.374]


    На рис. 55, б, в представлено изменение теплот и свободных энергий образования этих соединений с возрастанием атомного-номера металла. Для окислов щелочноземельных металлов, имеющих преобладающий ионный характер, с возрастанием параметра решетки наблюдается некоторое понижение теплоты образования. Для нитридов и карбидов переходных металлов IV—VI групп теплоты образования с возрастанием атомного номера металла изменяются аналогично параметру решетки. Теплоты образования соединений металлов 5-го и 6-го периодов близки между собой, а металлов 4-го периода существенно ниже. Это проявляется в виде изломов на кривых, отвечающих соединениям циркония, ниобия и молибдена. Понижение энергии связи для нитридов и карбидов титана, ванадия и хрома при одновременном уменьшении межатомного расстояния можно объяснить вкладом металлической компоненты энергии связи. Наличие электронного газа должно вызывать наряду с притяжением катионов отталкивание анионов, а так как последние имеют большие размеры, разрыхляющее действие свободных электронов будет превалировать. С этой точки зрения закономерна близость теплот образования карбидов титана, циркония и гафния, имеющих низкую концентрацию электронов. Отметим, что максимальными температурами плавления (3800—4000°) обладают именно эти карбиды. [c.140]

    Для некоторых лабораторных работ, где требуется получение очень высоких температур, применяются изделия из окислов редких металлов — окиси тория (температура плавления около 3 000° С, изделия обжигаются при 1 800—1 900° С, рабочая температура до 2500° С, удельный вес 10,0, термически неустойчивы) и окиси бериллия (температура плавления 2 600° С, изделия обжигаются при 1 750—1 800° С, рабочая температура до 2 000° С, удельный вес 3,0, термостойкость хорошая), а также нитриды бора (температура плавления больше 3 000° С), титана (температура плавления 3 200° С) и карбиды бора, хрома, ванадия, вольфрама и молибдена. [c.71]

    Углеграфитовые Ж. м. отличаются жаропрочностью в сочетании с высокой термостойкостью и низкой удельной массой. Жаростойкость таких материалов достигается нанесениел жаростойких покрытий. В тугоплавких стеклах и ситаллах жаростойкость сочетается со спец. оптическими свойствами и низким коэфф. термического расширения. Материалы на основе окислов и тугоплавких соединений, керамико-металличес-кие, композиционные и углеграфи-товыо материалы, жаростойкие бетоны и цементы получают из порошков с последующим формованием и отвердением (бетонов и цементов) или спеканием. Материалы на основе тугоплавких соединений и композиционные материалы могут быть получены методом горячего прессования. Металлические и некоторые композиционные Ж. м. на основе металлов получают методами металлургической технологии (плавление — литье — обработка давлением — термическая обработка) с целью получения заданных свойств. Для повышения жаростойкости на металлические и углеграфитовые материалы наносят жаростойкие нокрытия методами диффузионного насыщения, плазменного, газопламенного или детонационного напыления, газофазного (пиролитического), электрохим., хим. или электрофоретического осаждения. Так, молибденовые снлавы в результате обработки в парах кремния или в газовой смеси четыреххлористого кремния и водорода покрывают жаростойким слоем дисилицида молибдена. Аналогичная обработка углеграфитовых материалов приводит к образованию па их поверхности жаростойкого покрытия из карбида кремния. Высокая жаростойкость некоторых тугоплавких соединений и металлических сплавов определяется их способностью образовывать при высоких т-рах в контакте с хим. агрессивной средой поверхностные плотные слои тугоплавких нелетучих продуктов взаимодействия, являющихся диффузионным барьером и уменьшающих скорость хим. реакции. Так, многие силициды, карбиды хрома и кремния, [c.423]

    Ценными свойствами обладают карбиды хрома. Карбид Сг зСе имеет плотность 7 Мг/м г. ц. к. решетку с периодом а= 1,0638 нм температура плавления 1520 °С. Теплота образования СггзСе в стандартных условиях ДЯобр=209,40 кДж/моль. [c.374]

    Стеллиты, сормайты и ПГ-ХН80 — литые твердые сплавы с температурой плавления 1260—1300 °С. Они представляют собой твердый раствор карбидов хрома в кобальте (стеллиты), в никеле и железе (сормайты) или в никеле (ПГ-ХН80). [c.228]

    Сверхтвердые сплавы состоят из карбидов и силицидов вольфрама, хрома, титана, тантала. Сцементированные кобальтом, никелем или железом, они обладают твердостью, приближающейся к твердости алмаза (9,6 по шкале Мооса) и в особенности карбосилицид титана. Такие сплавы имеют чрезвычайно высокую температуру плавления (например, температура плавления сплава тантала с карбидом гафния 3950° С) и при нагревании твердость их не снижается. [c.353]


    Металлизация атомов неметалла способствует увеличению электронной концентрации в решетке переходного металла, деформированной в процессе внедрения, что приводит к заполнению вакантных состояний в -зоне металла и усилению ковалентности связи. При этом образуются прочные гибридные sp-связи с участием -электронов переходного металла и sp-электронов внедряющихся атомов. Именно поэтому максимальной тугоплавкостью обладают карбиды и нитриды начальных элементов -рядов (металлов 1VB — VB-rpynn). Сами же эти металлы не являются наиболее тугоплавкими в своих рядах. В то же время карбиды и нитриды хрома, молибдена и вольфрама, обладающих максимальными температурами плавления, относительно менее тугоплавки. Это можно объяснить тем, что в самих металлах VIB-группы ковалентность максимальна, дефицит электронов ощущается не столь остро и электроны внедряемых атомов способствуют главным образом металлизации связи. [c.218]

    Исследована возможность повышения чувствительности определения бериллия, марганца, хрома и алюминия в нефтепродуктах путем обработки графитовой трубки карбидообразующими элементами [267]. Работа выполнена на СФМ Перкин-Элмер , модель 403 с ЭТА НСА-70. Для обработки печи применяли лантан, цирконий, кремний, ванадий, бор, молибден и барий в виде водных растворов неорганических соединений и масляных растворов сульфонатов. В атомизатор вводили раствор с заданным количеством обрабатываюшего элемента и проводили три стадии термообработки сушку при 100 °С, озоление при 600 °С и атомизацию при 1950 °С. При этом образовывались термостойкие карбиды, которые покрывали внутреннюю поверхность графитовой печи и устраняли помехи при анализе. Температура плавления карбидов этих семи элементов 2550—3530 °С. Механизм устранения помехи, по-видимому, заключается в предотвращении образования карбида определяемого элемента. Печь можно обработать одним или несколькими элементами одновременно или последовательно, с повторением каждый раз всех трех циклов нагрева. Во всех случаях после обработки абсорбция значительно повышается (в 2,2— [c.154]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Помимо графита и кремния, которые могут применяться в свободном или элементарном состоянии брикетированными с помощью глины, глинозема или жидкого стекла -, были также предложены многие другие каталиваторы. В качестве примеров можно упомянуть , огнеупорные или содержащие кремнезем кирпичи, пропитанные солями меди, или такие огнеупорные материалы, как хромовые и никелевые стали, ферросилиций, карбид кремиия , окиси хрома, вольфрама, ванадия или урана, или их смеси хром, вольфрам, молибден или сплавы этих металлов Последние из упомянутых металлов устойчивы к действию высоких температур и не благоприятствуют отложению угля. Были предложены также элементы селен, теллур и таллий или соединения их Имеются указания также и на то, что газообразные парафиновые или олефиновые углеводороды (при температуре от 400 до 1100°) подвергались пиролизу в присутствии паров металлов с температурой плавления ниже 500° (за исключением щелочных металлов) Как правило, катализаторы, применяемые для превращения газообразных парафинов в ароматические углеводороды, могут быть также применены и для аналогичных пирогенетических реакций газообразных олефинов. Ароматиче- [c.203]

    Демпси [11] также считает, что карбиды и нитриды не относятся к числу материалов с доминирующими ковалентными связями, это скорее всего сплавы, подобные переходным металлам, из которых они образованы. Такую модель Демпси обосновывает сопоставлением температур плавления Гцл карбидов и нитридов, с одной стороны, и переходных металлов, с другой. У последних максимум Гпл для любого периода таблицы Менделеева наблюдается вблизи шестой группы (Сг, Мо и W) (см. гл. 1, рис. 1). Высокие температуры плавления металлов этой группы объясняются заполненностью связующих состояний -полосы, которая вмещает примерно шесть электронов на атом (для грубой оценки формы полосы переходных металлов см. зависимость коэффициента у от состава, рис. 97 гл. 6). У хрома, молибдена и вольфрама связующие состояния -полосы почти заполнены, что и обусловливает высокие температуры их плавления. У элементов групп, предшествующих VI группе периодической системы, связующая подполоса не полностью заполнена, в то время как элементы следующих за шестой групп имеют уже электроны в антисвязующей подполосе. В обоих случаях Гпл элементов меньше, чем у элементов VI группы. Исключение составляет только ванадий, точка плавления которого несколько выше, чем у хрома. [c.240]

    Для окончательной отделки применяются смазки без жиров в качестве абразивных материалов используют обычно окись алюминия и карбид кремния, которые приклеивают к ткани диска. Для обработки обычных и нержавеющей сталей наиболее подходящим абразивом является плавленая окись алюминия, карбид кремния и прокаленный глинозем. Известковые соединения обычно применяются для цветных металлов для латуни иногда употребляется красная окись железа. Окись хрома и неплавленный глинозем — наиболее часто применяемые абразивы для сталей. [c.416]

    Для получения карбида кремния полупроводникового качества необходима высокая чистота синтезируемого материала и изготовление его в виде монокристаллов. Методы выращивания из расплавов в данном случае неприменимы (Si интенсивно возгоняется до достижения точки плавления при Гa 2500°С), поэтому возможны методы выращивания из паровой фазы и из растворов. Было показано, что кристаллы Si можно выращивать из его растворов в хроме, никеле и других металлах. Однако при этом кристаллы невоспроизводимы по свойствам и геометрии. Основным методом получения монокристаллов Si яв- [c.447]

    Температуры плавления рассматриваемых соединений изменяются сходным образом (рис. 88). Максимумы температур плавления обнаруживаются у карбидов и нитридов титана, циркония, гафния. При переходе к соединениям высоковалентных металлов VI—VII групп (хрома, молибдена, марганца) наблюдается интенсивное падение температур плавления, затем новый подъем температур плавления при переходе к соединениям железа и дальнейшее понижение температур плавления соединений никеля. Максимальные температуры плавления среди моноборидов имеют бориды металлов V группы ванадия и ниобия. Среди моноокислов и моносульфидов наиболее тугоплавкими являются соединения щелочноземельных металлов. [c.186]


Смотреть страницы где упоминается термин Карбид хрома плавления: [c.91]    [c.297]    [c.384]    [c.218]    [c.176]    [c.764]    [c.96]    [c.678]    [c.268]    [c.82]    [c.655]    [c.10]    [c.111]    [c.10]    [c.9]    [c.297]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.83 ]




ПОИСК







© 2025 chem21.info Реклама на сайте