Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Седиментация в поле центробежных сил

    По характеристикам седиментации в центробежном поле прп частоте вращения ротора в несколько десятков тысяч оборотов в секунду можно рассчитывать молекулярные массы, например, полимеров. Определив массу т или размер г макромолекулы, мольную массу (численно равную молекулярной массе) рассчитывают по формуле [c.191]

    Работа 13. ДИСПЕРСИОННЫЙ АНАЛИЗ ВЫСОКОДИСПЕРСНЫХ ПОРОШКОВ МЕТОДОМ СЕДИМЕНТАЦИИ В ЦЕНТРОБЕЖНОМ ПОЛЕ [c.89]


    Распространенным методом оценки размеров частиц дисперсной фазы в дисперсных системах является седиментация в центробежном поле. При этом можно не только установить истинное содержание, но и определить фракционный состав частиц дисперсной фазы. [c.82]

    V.6. Расчет кривых распределения частиц по седиментации в центробежном поле [c.104]

    У.В.З. Построить седиментационную кривую пигмента кубового желтого в воде по экспериментальным данным седиментации в центробежном поле частота вращения центрифуги л —2000 об/мин вязкость среды 11=1 10 Па-с плотность дисперсной фазы р= 1,3. Ю кг/м плотность дисперсионной среды ро=ЫО кг время центрифугирования /=180 с максимальная высота л тах = 6.10 м максимальная масса выпавшего осадка (после полного оседания) /И ,ах = 63.10 кг расстояние от оси вращения центрифуги до плоскости наблюдения Ла=14-10 м. [c.120]

    Четвертое явление, обратное электрофорезу, было открыто Дорном. При оседании частиц кварца в воде регистрировалась разность потенциалов, возникающая между двумя электродами, расположенными на разной высоте (рис. 77,6). Это явление было названо потенциалом оседания (или седиментации ). Подобный же эффект наблюдается в поле центробежной силы при центрифугировании суспензии. [c.207]

    НОСТЬ потенциалов, возникающая между двумя электродами, рас-положенными на разной высоте (рис. XII.9,б). Это явление было названо потенциалом оседания или седиментации, а также эффектом Дорна. Подобный же эффект наблюдался в поле центробежной силы при центрифугировании суспензии. [c.193]

    Метод седиментации в центробежном поле. В этом методе используется уравнение, выражающее скорость оседания сферических частиц в центробежном поле  [c.73]

    Однако рассматриваемое равновесие может быть сдвинуто в сторону преобладания седиментации при замене гравитационного поля центробежным со значительно большим ускорением, создаваемым действием центрифуги или ультрацентрифуги. Этот метод, впервые использованный Думанским и получивший развитие в работах Сведберга и его школы, позволяет в настоящее время создавать ускорения до 10 —и благодаря этому производить не только седиментацию коллоидных частиц, но даже и седиментационное разделение молекул разной массы. Применение ультрацентрифуг дает возможность проводить наряду с дисперсионным анализом коллоидных систем и растворов высокомолекулярных соединений также препаративное разделение их на фракции. [c.156]

    Седиментация в центробежном поле [c.117]


    Дегазацию в поле центробежных сил применяют для ускорения седиментации пузырьков. Наибольший интерес представляют непрерывные процессы дегазации в тонком слое в центрифугах, особенно если их ведут с одновременным разрежением [26, 275, 276]. [c.125]

    Следует особо подчеркнуть, что при выводе формулы (4) нет необходимости прибегать к каким-либо модельным представлениям о форме растворенной частицы. Для нахождения коэффициента трения fs делается допущение коэффициент трения молекулы при диффузии ее в растворителе в нормальных условиях равен коэффициенту трения при седиментации в центробежном поле. Справедливость такого допущения для шарообразных частиц очевидна. [c.134]

    Чтобы определить молекулярную (мольную) массу полимера, по полученному размеру частицы и известной плотности рассчитывают ее массу, которая связана с мольной массой соотношением (IV. 15). Метод, основанный на измерении диффузии Б сочетании с методом седиментации в центробежном поле позволяет определить массу частиц любой формы (не только сферической), так как прн обработке результатов измерений по [c.246]

Рис. 30. К объяснению принципа расчета кривой седиментации для центробежного поля. Рис. 30. К объяснению <a href="/info/1526955">принципа расчета кривой</a> седиментации для центробежного поля.
    Значительное расширение диапазона измерений в область сверхтонких частиц, диаметры которых составляют десятые и даже сотые доли микрометра, достигается при использовании седиментации в поле центробежных сил. Одновременно существенно сокращается продолжительность анализа. К приборам такого типа относится центробежный седиментометр СВ-2 Тульского филиала ОКВА (опытно-конструкторского бюро автоматики) МХП СССР, созданный совместно с институтом которым разработана также методика определений. [c.222]

    При седиментации в центробежном поле ультрацентрифуги макромолекулы, различающиеся по молекулярным массам или химическому строению, смещаются за равные промежутки времени I на разные расстояния х от оси вращения ротора, что проявляется как расплывание седиментационной границы. [c.107]

    Седиментация в поле центробежных сил применяется для измерения дисперсных систем с размерами частиц 0,1 мкм и выше. [c.35]

    В то время как теория равновесных электроповерхностных сил обсуждалась и подвергалась опытной проверке [130— 132], теория неравновесных электроповерхностных сил до сих пор менее развита, особенно в части расчета взаимодействия наведенных диполей. Вместе с тем роль этих сил в различных процессах, по-видимому, очень валика. Действительно, дефор.мация ДЭС может происходить также при действии различных внешних сил, вызывающих перемещение частиц относительно жидкой среды конвективных потоков жидкой среды, поля тяготения, поля центробежных сил, ультразвукового поля, механической вибрации, броуновского движения. Так, было обнаружено влияние возникающего электрического поля при седиментации мелких частиц на скорость седиментации 133]. Левич указывал, что вблизи движущейся капли может образоваться электрическое поле диффузионного происхождения [134]. Общая трактовка электрического поля движущихся пузырьков и капель была дана Дерягиным и Духиным [118]. [c.26]

    Седиментация в центробежном поле. Скорость осаждения частиц можно повысить, если заменить седиментацию в поле силы тяжести центрифугированием. Таким путем удается определить размеры коллоидных частиц и добиться оседания макромолекул. Если скорость движения частиц в радиальном направлении мала, что практически всегда достигается выбором угловой скорости центрифуги в зависимости от размеров частиц, то выполняется равенство [c.44]

    Чтобы определить молекулярную (мольную) массу полимера, по полученному размеру частицы и известной плотности рассчитывают ее массу, которая связана с мольной массой соотношением (IV. 16). Метод, основанный на измереиии диффузии, в сочетании с методом седиментации в центробежном поле позволяет определить массу частиц любой формы (т. е. не ограничиваясь сферическими частицами), так как расчет коэффициента диффузии В по (IV.42) дает возможность исключить из уравнения константы седиментации (IV.15) коэффициент трения В. В результате получим  [c.208]

    Для каких систем применяется седиментационный анализ в центробежном поле Как изменяется скорость оседания частиц в центробежном поле в процессе седимеитащп Напииште ныражение для константы седиментации в центробежном поле. [c.102]


    Разность потенциальных энергий (Аи = и —и ) частиц, находящихся в разных местах на расстоянии х и от некоторого уровня, где энергия принимается равной нулю, равна работе об-эатимого изотермического переноса одной частицы из х в х . Три обычной седиментации йи = тдЛк и Аи = тдАк, а при седиментации в центробежном поле и = 1по хс1х и [c.62]

    Мицеллы ПАВ по размерам и молекулярно-кинетичес-ким свойствам близки к макромолекулам высокомолекулярных соединений, и для определения мицеллярной массы ПАВ пригодны те же методы, которые применяются для нахождения молекулярной массы полимеров. Эти методы основаны на измерении интенсивности светорассеяния, скорости диффузии, скорости седиментации в поле центробежной силы ультрацентрифуги. (В последнее время предложен метод, основанный на измерении оптической плотности мицеллярных растворов, содержащих солюбилизированный олеофиль-ный краситель. Однако он находит лишь ограниченное применение — пригоден для неионогенных ПАВ с невысокой степенью оксиэтилирования.) [c.157]

    Определение дисперсного состава суспензий, порошков, аэрозолей и других микрогетерогенных систем основано на разнообразных седиментометрических методах дисперсионного анализа. К ним относят отмучивание — разделение суспензии на фракции путем многократного отстаивания и сливания измерение плотности столба суспензии, изменяющейся вследствие седиментации частиц суспензии пофракционное (дробное) оседание метод отбора массовых проб — один из наиболее достоверных накопление осадка на чашечке весов электрофотоседиментометрия, основанная на изменении интенсивности пучка света, проходящего через столб суспензии, о чем судят по измерениям оптической плотности седиментометрия в поле центробежных сил, основанная на применении центрифуг. В целом методы седиментометрии охватывают диапазон дисперсности от 10" до 10 м, включающий коллоидные, микрогетерогенные и некоторые грубодисперсные системы. Однако каждый из методов ограничен более узкими пределами дисперсности частиц. [c.376]

    Построить кривую оседания в координатах Q = /(т) и определить константы и т , пользуясь экспериментальными данными седиментации в центробежном поле пигмента голубого фталоцианинового в воде число оборотов центрифуги п = 3000 об мин, вязкость среды т] == ЫО-з н-сек1м , плотность пигмента у = 1,6х X 10 кг/ж , плотность среды уо = 1 10 кг/ж . Максимальная высота Н = 6-10-2 5-10- кг, время центрифугирования / = 1200 сек. [c.67]

    Построить кривую оседания в координатах <3= /(т) и найти константы и т,,, используя экспериментальные данные седиментации в центробежном поле пигмента голубого фталоцианинового в водной среде число оборотов центрифуги п = 2800 об/мин, вязкость среды Г] = ЫО-з н-сек.1м , плотность пигмента у == 1,6х X10 кг1м , плотность среды Уо = ЫО кг/м . Время центрифугирования t — 600 сек, максимальная высота Л=6-10"2 м, максимальное количество выпавшего вещества Рк = 4,8-10 кг. [c.68]

    Построить кривую оседания в координатах Q = /(т), используя экспериментальные данные седиментации в центробежном поле пигмента желтого в водной среде число оборотов центрифуги п = 1800 об1мин, вязкость среды т) = Ы0 3 н-сек/м , плотность пигмента 7 = 1,3-10 кг/м , плотность среды уо = 1 10 кг/ж . Время центрифугирования t = 300 сек, максимальная высота Н =6-10 м, максимальное количество выпавшего вещества Рк=6-10- кг. [c.68]

    Построить кривую оседания пигмента желтого в воде, используя экспериментальные данные седиментации в центробежном поле число оборотов центрифуги п = 1600 об/мин, вязкость среды т] = ЫО- н-сек м , плотность пигмента 7 = 1,3-10 кг1м , плотность среды 7о = 1 10 кг1м , время центрифугирования t = 180 сек, максимальная высота Я =6-10 2ж, максимальное количество выпавшего вещества Р = 6,3-10- кг. [c.68]

    Роль электроповерхностных неравновесных сил в различных процессах, вероятно, весьма значительна. Деформация двойного электрического слоя может происходить не только под действием внешнего электрического поля (этот случай -будет рассмотрен в разд. 5 настоящей главы), но и при действии конвективных потоков жидкой среды, гравитационного поля, поля центробежных сил, ультразвукового поля, механических вибраций, броуновского движения. В частности, выло обнаружено влияние электрического поля, возникающего при оседании мелких частиц, на скорость седиментации. В. Г. Левичем и-А.-Н. Фрумкиным было указано, что вблизи поверхности капли, движущейся в жидкой среде, может возникать электрическое поле диффузионного происхождения. Поляризация ионных слоев, наступающая вследствие деформации двойного электрического слоя, обусловливает проявление дальнодействующих сил притяжения между индуцированными диполями. Наконец, Штауф наблюдал образование периодических структур из непроводящих кол.иоидных частиц, находящихся в переменном электрическом поле. Некоторые из этих эффектов более подробно рассмотрены в гл. IX. [c.197]

    В случае измерения скорости седиментации необходимы поля центробежных сил, обеспечивающие полное осаждение белков. Белок, находящийся в виде коллоидного раствора, обладает большей плотностью, чем растворитель. В ходе центрифугирования на молекулу белка действует значительная центробежная сила, которая, вызывая движение молекулы через среду, обеспечивает скорость перемещения, пропорциональную трению молекулы в среде. Скорость седиментации прямо пропорциональна молекулярной массе. Для определения молекулярной массы необходимы приборы со скоростью вращения ротора до 60 тыс. об/мин. Раствором белка заполняют прозрачную ячейку. Изменения концентрации, возникающие в процессе центрифугирования, могут прослеживаться с помощью оптических методов, например посредством шлирен- или интерференционной оптики, а также посредством прямого измерения абсорбции в УФ-области (сканирующая система). [c.360]

    Ситовый анализ состоит в последовательном просеивании образца пигмента через сита с уменьшающимися размерами отверстий и определении остатка иа каждом сите (в %) Таким методом можно фракционировать сравнительно крупные (грубодисперсные) порошки, поскольку самое тонкое сито, применяемое в промышлеиности, имеет размер отверстия 40 мкм Однако в настоящее время разработаны методы получения сит с отверстиями размером до 5 мкм, что позволит расширить возможности ситового анализа Седимеитационные методы анализа основаны на определении массы осаждаемых за единицу времени частиц пигмента из суспензии в гравитационном поле (при отстаивании) или в поле центробежных сил (при центрифугировании) Эти методы анализа получили наибольшее распространение Для получения кривой седиментации с помошд ю специальных весов непрерывно взвешивают массу выпадающего из суспензии пигмента, измеряют концентрацию взвешенных в суспензии частиц пигмента по мере его оседания или регистрируют оптическую плотность суспензии при оседании частиц Применение оптических методов для седимеитациоииого анализа дает возможность значительно сократить его продолжительность [c.243]

    Молекулы полимера в растворе не могут оседать под действием силы тяжести в гравитационном поле Земли, так как эти силы оказываются слишком малыми по сравнению с диффузионными. Поэтому возникла идея седиментационного анализа растворов полимеров в поле центробежной силы, в несколько сот тысяч раз превосходящей силу земного притяжения. Под действием такой центробежной силы молекулы растворенного полимера начинают оседать и между чистым растворителем и раствором образуется граница, которая передвигается ко дну (или к мениску, если растворенное вещество легче растворителя) ио мере седиментации вещества, со скоростью, пропарциональной силе, действующей на каждую молекулу растворенного полимера. [c.133]

    Седиментация в поле центробежных сил проводится как периодически, так и непрерывно. В периодическом варианте анализ осуществляется на пробирочных центрифугах. Скорость осаждения определяют взвешиванием осадка после декантации суспензии в отобранных пробах или по концентрации нёосевшей суспензии. Для пигментов используется колориметрирование неосевшей части суспензии [16]. Полный анализ при седиментации в поле центробежных сил порошков с размером частиц менее 1—2 мкм длится 30 мин. Недостатком периодического центрифугирования является необходимость остановок центрифуги для отбора проб, что приводит к искажению результатов анализа. [c.22]

    Таким образом, определив время действия центробежного поля, расстояние, пройденное частицами, зная угловую скорость и постоянные параметры системы, можно рассчитать размер частиц дисперсной системы, Используя соотношение ( .13), обычно по экспериментальным данным строят зависимость 1п.г от т, которая линейна при постоянной угловой скорости. Тангенс угла наклона прямой 1гис(т) равен произведению 5седЫ . откуда определяют константу седиментации и соответственно массу и размер частиц (IV.10). По характеристикам седиментации в центробежном поле при частоте вращения ротора в не- [c.227]

    Молекулярный вес образца может быть определен по одновременному измерению скорости седиментации в очень больших полях центробежной силы и коэффициента диффузии полимера в растворе. Ультрацентрифугирование нашло широкое применение при определении молекулярных весов таких компактных макромолекул, какими являются белки. Для статистических клубков применение метода скоростной седиментации осложняется тем, что при конечной концентрации раствора макромолекулы, перекры-ваясь, оказывают взаимное влияние друг на друга при седиментации. Это затрудняет интерпретацию экспериментальных данных. Средневесовой молекулярный вес полимеров, макромолекулы которых представляют собой статистические клубки, обычно определяют методами равновесного центрифугирования или методом Арчибальда. Однако для определения молекулярных весов кристаллических полиолефинов метод ультрацентрифугирования не применялся быстрый и удобный метод скоростной седиментации с успехом может быть применен для оценки молекулярно-весового распределения полиолефинов. [c.156]

    Седиментац ионные методы анализа основаны на определении массы осаждаемых за единицу времени частиц пигмента из суспензии в гравитационном поле (при отстаивании) или в поле центробежных сил (при центрифугировании). Эти методы анализа получили наибольшее распространение. Для получения кривой седиментации с помощью специальных весов непрерывно взвешивают массу выпадающего из суспензии пигмента, или измеряют концентрацию взвешенных в суспензии частиц пигмента по мере его оседания, или регистрируют оптическую плотность суспензии по мере оседания частиц. Применение оптических методов для седиментационного анализа позволяет значительно сократить его продолжительность. [c.185]


Смотреть страницы где упоминается термин Седиментация в поле центробежных сил: [c.190]    [c.61]    [c.519]    [c.519]    [c.193]    [c.519]    [c.519]    [c.220]    [c.227]    [c.446]    [c.153]   
Экстрагирование из твердых материалов (1983) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Седиментация

Седиментация седиментации

Центробежное поле



© 2025 chem21.info Реклама на сайте