Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные частицы потенциал

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]


    Осмотическое давление обусловлено понижением химического потенциала растворителя в присутствии растворенного вещества. Тенденция системы выравнять химические потенциалы во всех частях своего объема и перейти в состояние с более низким уровнем свободной энергии вызывает осмотический (диффузионный) перенос вещества. Осмотическое давление в идеальных и предельно разбавленных растворах не зависит от природы растворителя и растворенных веществ. При постоянной температуре оно определяется только числом кинетических элементов —ионов, молекул, ассоциатов или коллоидных частиц в единице объема раствора. [c.98]

    В ряде случаев при добавлении к золям электролитов, содержащих многозарядные ионы со знаком заряда, противоположным заряду коллоидных частиц, может наблюдаться не коагуляция, а наоборот, стабилизация и перемена знака дзета-потенциала. Это явление получило в коллоидной химии название перезарядки золей (опыт 111). [c.227]

Рис. IX, 10. Потенциальные кривые, характеризующие изменение энергии взаимодействия двух коллоидных частиц от расстояния Н между их поверхностями. Нумерация кривых возрастает с уменьшением Фо-потенциала. Рис. IX, 10. <a href="/info/4400">Потенциальные кривые</a>, <a href="/info/1596985">характеризующие изменение</a> <a href="/info/7663">энергии взаимодействия</a> <a href="/info/1696521">двух</a> <a href="/info/3662">коллоидных частиц</a> от расстояния Н между их поверхностями. Нумерация <a href="/info/500105">кривых возрастает</a> с уменьшением Фо-потенциала.
    При введении неиндифферентного электролита возможна и перезарядка коллоидных частиц. Сущность такой перезарядки поясним на следующем примере. Рассмотрим, что будет происходить при введении в золь иодида серебра, стабилизованный нитратом серебра, раствора иодида калия. До вйедёния электролита потенциалопределяю-щим ионом в золе, очевидно, будет ион Ag+, а противоионом — ион N0 . Частицы такого золя заряжены положительно. После введения в систему избытка иодида калия потен-циалопределяющим ионом станет ион 1 , а противоионом — ион Сами же частицы золя приобретут отрицательный заряд. Кроме того, нитрат серебра, содержащийся в дисперсионной среде, вступит в реакцию с введенным иодидом калия, в результате чего в системе образуется некоторое дополнительное количество отрицательно заряженной дисперсной фазы. Этот случай перезарядки отличается от уже рассмотренного случая перезарядки с помощью чужеродных ионов тем, что здесь происходит изменение не только но и фо-потенциала. Схема, поясняющая перезарядку дисперсной фазы с помощью неиндифферентного электролита, показана на рис. VII, 18. [c.194]


    До сих пор не существует строгой экспериментальной проверки теории, что ставит под сомнение выводы о величине -потенциала (или заряда) коллоидных частиц, сделанные на основе их электрофоретической подвижности. Несмотря на это, из-за простоты метод идентификации по электрофоретической подвижности находит широкое применение, особенно для биологических объектов. Поэтому ниже мы подробнее остановимся на методах определения электрофоретической подвижности. [c.140]

    Приготовленными растворами заполняют электрофоретические трубки (в первой используют золь 1 и раствор 5, во второй — золь 2 и раствор бит. д.). Электрофорез проводят в течение 40 мин. Определяют знак заряда коллоидных частиц и рассчитывают -потенциал по формулам (П1.40) и (П1.41). Результаты записывают в таблицу (см. табл. 1И.7). Объясняют полученные результаты. [c.97]

    Если бы теория Гельмгольца — Перрена была правильной, то при оседании коллоидных частиц в жидкости или при продавливании жидкости через капилляр вообще не должен был бы наблюдаться эффект Дорна или потенциал протекания, а явления злек-тро оре а и электроосмоса были бы невозможны. Однако если даже допустить, как это принималось ранее, что поверхность скольжения проходит между двумя обкладками двойного электрического слоя, то и в этом случае представления Гельмгольца — Перрена приводят к противоречию. В самом деле, при таком допущении электрокинетический потенциал, т. е. потенциал, обнаруживаемый при электрофорезе или электроосмосе, должен был бы соответствовать разности между всеми потенциалопределяющими ионами и [c.176]

    В ряде случаев при добавлении к золям электролитов с много-зарядными ионами, заряд которых противоположен по знаку заряду коллоидных частиц, может наблюдаться не коагуляция, а стабилизации золя и перемена знака дзета-потенциала. Это явление получило в коллоидной химии название перезарядки золей. Так, при добавлении к золю платины небольших количеств хлорида железа РеС1з наблюдается понижение отрицательного заряда коллоидных частиц платины и их коагуляция. Дальнейшее увеличение концентрации РеСЬ приводит к перезарядке коллоидных частиц платины они получают положительный заряд. [c.372]

    Электрические свойства дисперсных систем объясняют особенностью их строения, заключающейся в образовании мицелл (рис. VI.8). В центре мицеллы находится кристаллическое тело /, названное по предложению Пескова агрегатом. На нем, согласно правилу Панета—Фаянса (см. разд. 11.42), адсорбируются ноны 2, способные достраивать его кристаллическую решетку. Эти ионы сообщают агрегату электрический заряд и называются потен-циалопределяющими. В результате образуется ядро мицеллы, несущее электрический заряд, равный сумме электрических зарядов адсорбировавшихся на агрегате потенциалопределяющих ионов. Ядро создает вокруг себя электрическое поле, под действием которого к нему из раствора притягиваются противоионы, образующие вокруг ядра диффузионный слой 4 и частично входящие в состав адсорбционного слоя 3. Ядро совместно с адсорбционным слоем противоионов называется коллоидной частицей. Электрический заряд последней равен алгебраической сумме электрических зарядов потенциалопределяющих ионов и ионов адсорбционного слоя. Так возникает на частице заряд, определяющий -потенциал (дзета-потенциал) системы. Знак его соответствует знаку электрических зарядов потенциалопределяющих ионов. Противоионы диффузионного слоя мицеллы, относительно свободно [c.278]

    Значение среднего электрического заряда коллоидных частиц определяется разностью электростатических потенциалов, возникающей между коллоидными частицами и раствором при установлении равновесия в системе. Эта разность потенциалов называется -потенциалом (дзета-потенциал) системы. Чем больше -потенциал системы, тем больше значение среднего электрического заряда коллоидных частиц. [c.211]

    Во многих случаях пептизация находит применение для получения золей или суспензий из осадков. Для ускорения пептизации используют вещества, называемые пептизаторами. Действие их сводится к адсорбции на поверхности коллоидных частиц или даже к вхождению в кристаллическую решетку частиц. Так как пептизаторами наиболее часто являются ионы, они значительно изменяют заряд коллоидных частиц, потенциал поверхности частицы, а отсюда — и электростатическое расклинивающее давление. Это обусловливает пептизацию. Так, коагулят бромида серебра пептизируется под действием соли, содержащей ионы брома, которые адсорбируются на ионах серебра в решетке коллоидной частицы и сообщают ей свой заряд. Как пептизаторы подобным же образом действуют органические ионы с большой адсорбционной способностью. [c.112]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]


    Полное же падение потенциала от его значения на поверхности коллоидной частицы до нулевого значения соответствует максимальной разности потенциалов между твердой поверхностью и всеми противоионами, вместе взятыми. Эту максимальную разность потенциалов называют термодинамическим потенциалом. [c.174]

    Экспериментально определяется перенос в электрическом поле коллоидных частиц (электрофорез) или среды (электроосмос). Можно осуществить и обратные измерения разности потенциалов, возникающей при механическом движении коллоидных частиц (потенциал оседания) или среды (потенциал течения), но эти методы редко применяются. [c.107]

    По мере безграничного возрастания потенциала поверхности сила взаимодействия между коллоидными частицами растет не безгранично, а стремится к конечному пределу, близко подходя к нему при значениях Фа, близких к 100 мВ. Это объясняется тем, что с ростом ф увеличивается притяжение к поверхности противоионов, экранирующих действие внутренней обкладки двойного слоя. Взаимодействие частиц в случае высоких потенциалов поверхности определяется только составом электролита. [c.12]

    В связи с тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, f-потенциал дисперсных капелек, как правило, невелик. С одной стороны,это сильно снижает высоту возникающего потенциального барьера, с другой - затрудняет управление разделением эмульсий в электрических полях. К тому же диаметр капелек в разбавленных эмульсиях близок к размеру коллоидных частиц и составляет, как правило, 10" см. [c.15]

    Процесс диффузии заключается в самопроизвольном выравнивании концентраций молекул или коллоидных частиц в системе, находящихся в хаотичном тепловом движении. Результатом диффузии является установление одинакового химического потенциала каждого компонента и соответственно равномерного распределения ди )-фундирующих частиц по всему объему системы. [c.19]

    Микроскопический и ультрамикроскопический методы. Эти методы определения электрофоретической подвижности заключаются в определении скорости передвижения индивидуальных коллоидных частиц в электрическом поле при помощи микроскопа или ультрамикроскопа. Преимущество этого метода перед методом подвижной границы состоит в том, что при исследовании с помощью микроскопа частицы находятся в одной и той же окружающей их среде и отсутствует поверхность раздела между коллоидной системой и боковой жидкостью. Другое преимущество этого метода заключается в том, что для определения достаточно очень малое количество раствора. Недостаток этого метода тот, что нельзя исследовать электрофоретическую подвижность частиц в растворах с более или менее значительной концентрацией дисперсной фазы, так как в таких растворах наблюдение за перемещением отдельной частицы невозможно. Разбавление же системы чужеродной жидкостью всегда влияет на -потенциал. [c.210]

    Если в дисперсную систему вводить большое количество электролита, то произойдет увеличение количества противоионов в адсорбционном слое коллоидных частиц. Это повлечет за собой уменьшение среднего электрического заряда коллоидных частиц и соответствующее снижение -потенциала системы. В итоге взаимное отталкивание частиц ослабеет и увеличится вероятность их столкновений. А столкновение коллоидных частиц, согласно принципу минимума свободной энергии, приводит к их слипанию (слиянию). В результате будет происходить их коагуляция (коалесценция), за которой может последовать оседание укрупнившихся частиц — седиментация. [c.212]

    Механизм электролитной коагуляции. Как известно, гидрофобные коллоиды неустойчивы в изоэлектрическом состоянии, т. е. электронейтральные частицы коагулируют с наибольшей скоростью. На рис. 111 показана схема снятия заряда с коллоидной частицы при добавлении электролита с двухзарядными анионами. Как видим, гранула становится электронейтральной в том случае, если противоионы диффузного слоя, заряженные отрицательно, перемещаются в адсорбционный слой. Чем выше концентрация прибавляемого электролита, тем сильнее сжимается диффузный слой, тем меньше становится дзета-потенциал и, следовательно, тем быстрее начинается процесс коагуляции. При определенной концентрации электролита практически все противоионы перейдут в адсорбционный слой, заряд гранулы снизится до нуля и коагуляция пойдет с максимальной скоростью, так как отсутствие диффузного слоя обусловит значительное понижение давления расклинивания. [c.370]

    Процессы медленной коагуляции пока весьма слабо изучены. Предполагают, что медленное протекание процесса коагуляции обусловливается тем, что лишь очень небольшое число столкновений коллоидных частиц приводит к их слипанию (агрегации). Установлено, что слипаются лишь те частицы, у которых по какой-либо. причине снизился до критического значения дзета-потенциал, или частицы, обладающие большой скоростью и при столкновении попадающие н сферу взаимного притяжения. [c.375]

    Энергию взаимодействия двух коллоидных частиц в зависимости от расстояния между их поверхностями выражают потенци- [c.86]

    Естественно, что при изменении потенциала фо у коллоидных частиц будет изменяться и С-потенциал. В кислой среде -потенциал, как и фо-потенциал, имеет положительный знак, в щелочной среде — отрицательный. Очевидно также, что должно существовать такое значение pH, при котором -потенциал равен нулю и система окажется в так называемом изоэлектрическом состоянии. При этом состоянии число положительных и отрицательных зарядов на поверхности одинаково. [c.195]

    Электрокинетические явления. Электрокинетическими явлениями называют перемещение одной фазы относительно другой в электрическом поле и возникновение разшзсти потенциалов при течении жидкости через пористые материалы (потенциал протекания) или при оседании частиц (потенциал оседания). Перенос коллоидных частиц в электрическом ноле называется электрофорезом, а течение жидкости через капиллярные системы иод влиянием разности потенциалов — электроосмосом. Оба эти явления были открыты профессором Московского университета Ф. Ф. Рейесом в 1809 г. [c.329]

Рис. VII, 22. Влияние релаксации и различных типов электролитов на электрофорез коллоидных частиц с отрицательным -потенциа-лом, равным 50 мВ. Рис. VII, 22. <a href="/info/400558">Влияние релаксации</a> и <a href="/info/25662">различных типов</a> электролитов на <a href="/info/72928">электрофорез коллоидных частиц</a> с отрицательным -потенциа-лом, равным 50 мВ.
    Прй выборе боковой жидкости следует руководствоваться некоторыми требованиями к ее составу и свойствам. Помимо того, что в отличие от коллоидного раствора она должна быть прозрачной или бесцветной, она должна также не влиять на -потенциал переходящих в нее из зоЛя коллоидных частиц и обладать электропроводностью, равной или немного большей электропроводности коллоидной системы. Это обычно обеспечивает образование резкой границы между золем и боковой жидкостью и позволяет обходиться без введения поправок на их различную электропроводность при вычислении градиента внешнего потенциала. [c.208]

    Нетрудно представить себе соотношение между электропроводностью, обусловленной коллоидными частицами, и электропроводностью за счет ионов, присутствующих в золе. Примем, что в золе содержится 1 объемн.% дисперсной-фазы, радиус частиц л = 50 А и С-потенциал составляет 100 мВ в дисперсионной среде, для которой х = 10 . Для заряда частиц, по аналогии с уравнением (УП, 31), можно написать уравнение  [c.219]

    Этот на первый взгляд трудно понятный вывод объясняется, как мы видели, тем, что по мере роста фо-потенциала увеличивается притяжение противоионов к поверхности частицы. Таким образом, параллельно с ростом заряда внутренней обкладки двойного электрического слоя и потенциала поверхности усиливается и экранирование внешнего поля этой обкладки противоионами. Поэтому дальнейший рост напряженности электрического поля в периферийных частях ионных атмосфер и сил взаимодействия обеих частиц прекращается. Таким образом, если коллоидные частицы заряжены достаточно сильно, то их взаимодействие зависит только от заряда противоионов, экранирующих действие внутренней обкладки двойного слоя и обусловливающих его толщину, [c.292]

Рис. IX, 12. Зависимость электростатической силы отталкивания Ра между двумя коллоидными частицами от потенциала Фо их поверхности. Рис. IX, 12. Зависимость <a href="/info/1574569">электростатической силы отталкивания</a> Ра между двумя <a href="/info/3662">коллоидными частицами</a> от потенциала Фо их поверхности.
    Порог концентрационной коагуляции, как и следовало ожидать, не зависит от фо-потенциала, но зависит от значения постоянной Л, диэлектрической проницаемости е раствора, температуры Т и валентности 2 противоиона. Ион, заряженный одноименно с коллоидной частицей, на коагуляцию оказывает малое влияние, несколько изменяя лишь значение коэффициента С. [c.293]

    Механизм защитного действия сводится, как мы уже указывали, к образованию вокруг коллоидной частицы адсорбционной оболочки из высокомолекулярного вещества. Электронномикроскопические снимки непосредственно доказали наличие таких защитных оболочек. Например, адсорбционные слои из метилцеллюлозы на частицах полистирола имеют толщину 70—100 А. Защитный слой, если он образован из макромолекул, имеющих полярные или ионогенные группы, может обеспечивать индуцированную сольватацию частица и достаточно высокий -потенциал, что обусловливает повышенную устойчивость системы. Кроме того, согласно новейшим представлениям, стабилизация коллоидных частиц может происходить вследствие теплового движения и взаимного отталкивания гибких макромолекул, только частично связанных с частицами золя в результате адсорбции отдельных их участков (энтропийный фактор устойчивости). [c.305]

    При диффузном и кинетическом (броуновском) движении коллоидных частиц или при наложении алектрического поля происходит скольжение гранулы относительно диффузного слоя. На грани -це скольжения 1-2, которая лежит межцу адсорбционным и диффуз-ншаи слоят противоионов возникает разность потенциалов, называемая электрокинетическим или дзота-потенциало м( ). [c.25]

    Объяснение этих явлений основано на представлениях Квинке (1861 г.) о существовании так называемого двойного электрического слоя на фазовой границе между жидкостью п твердой стенкой. В самом деле, если жидкость, находящаяся непосредственно у стенки капилляра, содержит избыток электрического заряда, компенсированный соответствующим избытком противоположного заряда на стенке (рис. 35), то при наложении электрического поля, направленного по оси капилляра, возникнет сила, стремящаяся переместить заряды в жидкости, а вместе с ними и саму жидкость в капилляре относительно его стенки. В результате мы имеем электроосмос. Напротив, если, создав разность давлений на обеих сторонах (концах) капилляра, мы вызовем в нем течение жидкости, то это приведет к перемещению заряда жидкости вдоль оси капилляра. Появится так называемый конвективный электрический ток и соответствующее электрическое поле — потенциал течения. Наличие зарядов на поверхности коллоидных частиц вызывает, как и в случае ионов, их перемещение относительно жидкой фазы в электрическом поле, т. е. электрофорез. И наконец, при седиментации заряженных частиц их заряд переносится в направлении оседания, в результате чего появляются конвективный ток осаждения и соответствующее электрическое поле — седиментационный потенциал. [c.134]

    Внешнее электрическое поле действует на заряды двойного электрического слоя коллоидная частица и диффузные протнво-ноны перемещаются в сторону электродов с противоиоложными знаками. Смещение дисперсной фазы относительно дисперсионной среды происходит по поверхности скольжения. Направление движения частиц дисперсной фазы определяет их знак заряда. Измерив линейную скорость движения и частиц (или границы раздела золь — дисперсионная среда) в электрическом поле, можно рассчитать потенциал на поверхности скольжения — электрокинетический потенциал по уравнению Смолуховского (VI.1)  [c.96]

    На основании изучения электрокинетических явлений в коллоидных системах было установлено, что у поверхности коллоидных частиц на границе разд,ела фаз образуется двойной электрический слой и возникает скачок потенциала. Это обусловлено тем, что ионы одного знака необменно адсорбируются на поверхности адсорбента, а иоиы противоположного знака в силу электростатического притяжения располагаются около нее. Причем величина и знак заряда поверхности зависят от природы твердых частиц адсорбента и от природы жидкости, с которой он соприкасается. [c.313]

    Из всего вышесказанного не следует делать вывод о том, что основная причина коагуляции заключается в достижении некоторого постоянного для всех случаев критического дзета-потенциала. Исследования последних лет, проведенные советскими учеными В. В. Дерягиным и его сотрудниками, показали, что коагулирующее действие электролитов заключается не столько в непосредственном уменьшении сил отталкивания между коллоидными частицами через понижение дзета-потенциала, сколько в том, что изменение строения двойного электрического слоя и сжатие диффузной его части, обусловленное прибавлением электролита-коагулянта, влечет за собой понижение расклинивающего действия гидратных (сольватных) оболочек диффузных ионов, разъединяющих коллоидные частицы. Иными словами, необходимое для коагуляции данного золя понижение расклинивающего действия (или давления) сольватных оболочек достигается уменьшением диффузного слоя противоионов, что ведет к соответствующему понижению величины дзета-потен-адиала. [c.371]

    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Влияние индифферентных электролитов. Рассмотрение влияния различных факторов на -потенциал целесообразно начать с наиболее простого и практически чрезвычайно важного случая — введения в систему индифферентных электролитов, т. е. электролитов, не имеюших ионов, способных достраивать кристаллическую рещетку коллоидной частицы. Следует указать, что именно введением Индифферентных электролитов на практике чаще всего пользуются для коагуляции коллоидных систем. [c.191]

    Как уже было показано, индифферентные электролиты не могут сколько-нибудь существенно изменить общий гкачпк пптен-циала коллоидных частиц, а электрокинетический потенциал такие электролиты в общем случае снижают в результате увеличения/ концентрации противоионов и сжатия двойного электрического/ слоя. [c.191]

    Рассматривая влияние индифферентных электролитов, мы принимали, что на электрокинетический потенциал оказывают влияние иоиы, заряд которых протй-воподожен по знаку заряду коллоидной частицы и одинаков с зарядом противоионов. Возникает вопрос, могут ли влиять на -потенциал ионы вводимого индифферентного электролита, заряженные одноименно с коллоидной частицей (так называемые сопутствующие или побочные ионы). На этот вопрос исследователя отвечают по-разному, но во всяком случае, если эти ионы и влияют на электрокинетический потенциал, то незначительно. К этому вопросу мы возвратимся "в гл. IX. [c.193]

    Не рассматривая подробно влияние электрической релаксации на скорость электрофореза, отметим лишь, что, согласно Овербеку, эффект релаксации зависит от С-потенциала, величины на и от валентности ионов электролитов, присутствующих в системе. На рис. VII, 22 в качестве иллюстрации показано влияние электрическо г релаксации для сферических коллоидных частиц с отрицательным -потенциалом, равным 50 мВ, и различных типов электролитов. На оси абсцисс отложены значения ха, а на оси ординат — значения величины на которую следует умножить скорость электрофоретического переноса, вычисленную по уравнению Гюккеля (VII,47), чтобы получить правильные результаты. Пунктир- ной линией показана кривая, характеризующая изменение скорости, вычисленной по уравнению Генри без учета релаксации. [c.205]

    Эта схема объясняет как заряд частиц золя сульфида мышьяка, так и поведение золя при введении в него электролитов. Однако схема ничего не говорит о том, каким образом обеспечивается связь между ионогенным комплексом и неактивной частью мицеллы. Эта схема не может объяснить и того, почему коллоидные частицы характеризуются как общим скачком потенциала на границе двух фаз, так и особым -потенциалом. обнаруживающимся только при электрокинетиче-. ских явлениях. [c.241]

    Для того чтобы понять механизм концентрационной коагуляции, необходимо остановиться на весьма важной особенности — зависимости сил электростатического взаимодействия от фо-потен-циала рассмотренного ранее на примере двух пластинок. Теория показывает, что по мере безграничного возрастания фо-потенциала обеих поверхностей сила электростатического отталкивания между коллоидными частицами любой формы не возрастает безгранично, а стремится к конечному пределу, подходя к нему уже при значениях потенциала поверхности, превышающих 100 мВ (рис. IX, 12). Вследствие этого свойства, как бы насыщения сил, можно говорить о си взаимодействия предельно заряженных поверхно-стей как о величйнёГне за1тж1гей от точяых значений потенциала поверхности. [c.292]


Смотреть страницы где упоминается термин Коллоидные частицы потенциал: [c.371]    [c.81]    [c.290]    [c.300]    [c.300]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы



© 2024 chem21.info Реклама на сайте