Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Буферные растворы влияние кислоты или основани

    С особым случаем влияния одинаковых ионов мы встречаемся в так называемых буферных растворах. Буферный раствор состоит из слабой кислоты и соли, содержащей одинаковый с кислотой анион, либо из слабого основания и соли, содержащей одинаковый с ним катион. Примером буферного раствора может служить смесь H N и Na N в одном растворе. Поскольку такая смесь содержит большой резерв ионных и молекулярных частиц, она обладает способностью поддерживать почти постоянное значение pH при добавлении в нее небольших количеств сильной кислоты или сильного основания. Поясним это, рассматривая равновесие [c.273]


    Нужную концентрацию ионов Н3О+ или ОН в растворах создают обычно добавлением сильных кислот или оснований. Однако при расчетах количества вводимого сильного электролита следует иметь в виду, что растворы, к которым добавляют сильный электролит, могут оказывать буферное действие, т. е. уменьшать влияние сильных электролитов. Сильное буферное действие оказывают растворы сильных кислот и оснований, а также специальные растворы, называемые буферными. [c.57]

    Если к смеси добавить сильное основание КОН, то в реакцию с ним вступит второй компонент смеси ЫН4+-ЬОН- рьННз-нНгО. Результатом реакции является образование слабого электролита Н2О и, таким образом, введенные ионы ОН" не будут оказывать существенного влияния на pH раствора. В табл. 3.8 приведены основные типы буферных растворов и формулы для расчета pH. Из расчетных формул видно, что pH буферных растворов зависит от константы диссоциации слабой кислоты или основания, соотношения концентраций компонентов смеси, pH кислых буферных растворов и практически не зависит от температуры. Разбавление (до определенных пределов) не влияет, поскольку при этом концентрации компонентов смеси меняются одинаково и их соотношение [c.57]

    Совершенно по другому ведут себя буферные растворы, в которых под влиянием таких же количеств кислоты или основания лишь незначительно изменяется значение pH. Максимальную буферную емкость имеют ра--створы сла бой ки слоты и их соли (кислотные анионы) или слабого основания и их соли (катион основания). [c.139]

    Растворы, содержащие одновременно какую-либо слабую кислоту и ее соль или какое-либо слабое основание и его соль и оказывающие буферное действие, называют буферными растворами. Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Присутствие в растворе слабой кислоты или слабого основания и их солей уменьшает влияние разбавления или действия других кислот и оснований на pH раствора. [c.85]

    Имеются два эффекта разбавления, которые целесообразно рассматривать отдельно. Первый — это влияние разбавления на равновесие воды, которая является одновременно и слабой кислотой и слабым основанием. Он вызывает сдвиг в нейтральную область. Второй — это влияние разбавления на коэффициент активности. В разбавленных растворах, где применимо уравнение (V. 27), значение dlgyldl всегда отрицательно. Изменения в меж-ионном взаимодействии при разбавлении раствора имеют тенденцию увеличивать коэффициенты активности и повышать величину pH растворов сильных оснований, слабокислых буферных растворов [значение 2z+l) отрицательно] и кислых солей [сравнить уравнения (V. 19), (V. 27) и (V. 29)]. Значение pH растворов сильных кислот [уравнение (V. 19)] и буферных растворов, состоящих из слабых оснований и их солей [уравнение (V. 27), где (224-1) положительно] имеет тенденцию уменьшаться. Суммарный результат этих двух эффектов состоит в том, что pH слабокислотных буферных систем, имеющих pH больше 7, проходит через максимум при низкой концентрации. Таким же образом pH растворов, состоящих из слабого основания и его соли, может пройти через минимум, если основание настолько слабое, что pH раствора меньше 7. [c.105]


    Таким образом, для приготовления буферных смесей с желаемым значением pH необходимо взять слабые кислоты или основания с соответствующими значениями констант диссоциации, а также подбирать определенные соотношения компонентов. Влияние этих факторов на pH буферного раствора показано в табл. 58. [c.256]

    Влияние различных условных определений индивидуальных ионных коэффициентов активности на величину ран, полученную из измерений э. д. с. иллюстрирует рис. IV. 6. Точка представляет значение ран для 0,01 т раствора, рассчитанное, как описано выше кривые / и 2 соответствуют ран, основанному на величине усь определенной по уравнению (I. 27 ") с параметром а, равным 8 и ЗА. Как показывает рис. IV.6, ран растворов буры почти не меняется с изменением концентрации (от 0,01 до 0,05т). Необычный ход кривых несомненно отражает тенденцию метаборной кислоты к полимеризации [30], вызывающую отклонение буферного отношения от единицы. Следовательно, ран, рассчитанное простым применением закона действия масс к диссоциации метаборной кислоты без учета остальных равновесий, является ошибочным. Значение же, полученное по уравнению (IV. 11), по-видимому, [c.83]

    Буферные системы являются растворами смесей слабой кислоты с ее солью или слабого основания с его солью, которые регулируют концентрацию Н -ионов, уменьшая влияния всевозможных факторов, изменяющих pH раствора. Такие системы называют буферными растворами или регуля- [c.111]

    Кортюм [10] применил предельный закон Дебая — Хюккеля для приближенного расчета влияния добавки нейтральной соли (0,1 М) к разбавленным растворам сильных и слабых кислот и оснований, а также к буферным растворам. Результаты его расчетов даны в табл. У.4. [c.106]

    Г Буферные растворы смягчают влияние всевозможных факторов, изменяющих величину pH. Если ввести в систему реагирующих веществ тот или иной буфер, то, несмотря на образование при зеакции кислоты или основания, pH раствора будет оставаться 10ЧТИ постоянным. [c.280]

    Для исследования полярографического поведения органических веществ, восстанавливающихся с потреблением протонов в потенциалопределяющей стадии, анализируют влияние на характеристики волн pH растворов. Однако, изменяя pH раствора, мы неизбежно меняем его состав, что приводит не только к желаемому изменению pH, но и к не поддающемуся простому учету изменению отроения двойного слоя, а иногда и к изменению заполнения по-грхности электрода поверхностно-активными компонентами бу-пных систем. Последнее, например, имеет место в буферных гворах, содержащих сильно адсорбирующиеся органические кислоты или основания (в частности, фенилуксусную кислоту, входящую в состав буферных смесей Придо — Уорда). Так, в буферном растворе Придо — Уорда fi/j первой волны на полярограммах 4-нитропиррол-2-карбоновой кислоты за счет торможения электродного процесса адсорбированной фенилуксусной кислотой значительно отрицательнее, чем в других буферных растворах с тем же pH [59]. Поэтому желательно готовить буферные растворы, используя относительно слабо адсорбирующиеся компоненты. [c.341]

    Определение р/Сд в буферных растворах с известным значением pH обеспечивает меньшие погрешности результатов эксперимента из-за меньшего влияния углекислого газа воздуха, выщелачиваемых из стекла примесей и т. п. Однако при работе в буферных растворах необходимо вводить поправки на активность (см. раздел 6.1), которые являются тем менее достоверными, чем больше ионная сила раствора. Поэтому многие исследователи предпочитают отказаться от использования буферных растворов и проводить определение рКа в серии растворов исследуемого вещества, содержащих сильную одноосновную кислоту (основание). Термодинамическую константу р/Са в таких случаях находят экстраполяцией р/Са на нулевую концентрацию добавленной сильной кислоты (основания) или эквивалентными расчетными приемами [232,233]. [c.150]

    Описаны каталитические методы определения ванадия (V), основанные на реакции типа реакции Ландольта [55]. В работе [56] использована реакция окисления иодида броматом в присутствии аскорбиновой кислоты (метод фиксированной концентрации). Мешающее влияние Си, Ре, Мо и Т1 устраняют применением цитратного буферного раствора с pH = 2,2. Интервал определяемых содержаний ванадия составляет 0—10 мкг/мл, [c.253]

    Эти представления могут быть распространены на буферные растворы следующим образом. Отношение концентраций слабой кислоты НА и сопряженного с нею основания А фиксировано оно равняется буферному отношению Я, и н приблизительно равно Уменьшение диэлектрической проницаемости изменяет ан в силу того влияния, которое оно оказывает на отнощение коэффициентов активности. Последнее определяется зарядами, которые несут НА и А. Поэтому кислотность буферной системы типа НА, А понижается при увеличении диэлектрической проницаемости, в то время как для типа НА+, А она увеличивается. [c.182]

    Буферные сиесн. Смесь слабой кислоты или слабого основания с соответствующей солью в определенной области концентраций водородных ионов (положение которой зависит от силы слабой кислоты или основания) испытывает при прибавлении кислоты или щелочи сравнительно незначительное изменение концентрации водородных ионов. Этим явлением пользуются, если требуется приготовить растворы с низкой, но достаточно определенной концентрацией водородных или гидроксильных ионов. Получить такие растворы простым разбавлением растворов сильных кислот или оснований нельзя, так как, если их нормальность при разведении опускается ниже 1/юо или даже Vioooi то, как показывает рис. 126, даже минимальное добавление кислоты или щелочи оказывает огромное влияние на концентрацию ионов Н . Однако при работе с растворами трудно предотвратить доступ небольших количеств кислоты (углекислоты из воздуха) или щелочи (из стекла сосуда). Поэтому растворы с низкой, но достаточно определенной концентрацией водородных или гидроксильных ионов готовят смешиванием слабых кислот или оснований с их солями. Вследствие эластичной сопротивляемости этих смесей изменению концентрации водородных ионов их называют буферными смесями. Буферное действие такой смеси уменьшается с разведением. Для данной концентрации это действие будет максимальным, когда смесь содержит кислоту (соответственно основание) и ее соль почти в равных количествах. Тиле [Thiel A., Z. Elektro hem., 40, 150, 1934] предложил ряд буферных смесей, полезных тем, что их очень удобно готовить из веществ, легко получаемых в чистом состоянии. При их использовании можно всегда быстро приготовить растворы с точно определенной концентрацией водородных ионов в области между pH 1,5 и 11,0. [c.795]


    Для того чтобы калибровочный график был линейным, отношение Сх/Сг должно оставаться практически постоянным. Поэтому в случае, когда равновесие связано с переносом протона, влияние разбавления на отношение Сх/Сг можно свести к минимуму, если ввести избыточное количество кислоты или основания, либо поддерживать постоянное значение pH добавлением буферного раствора. Например, при изучении растворов хрома (VI) прямую линию получают, используя сильно кислотные растворы (когда преобладает СггО ) или, наоборот, сильно основные (с преобладанием СгО ). Если же исследовать водный раствор, не контролируя pH, калибровочный график искривляется. При исследовании комплексов металлов часто необходимо контролировать как pH, так и концентрацию избыточного лиганда. [c.127]

    Способность растворов протолитов уменьшать ( буферировать ) влияние сильных кислот и оснований (ионов лиония и лиата), введенных в эти растворы, количественно оценивается величиной, называемой буферной емкостью раствора. [c.67]

    Иа основании почти параллельного расположения кривых, изображенных на рпс. 155, для низких концентраций можно сделать вывод о том, что пунктирная линия, проведенная через точку пересечения кривой с осью ординат (lgЖA) будет отражать свойства бесконечно разбавленной уксусной кислоты в растворах хлористого натрия. В таких растворах эффект среды (слабой кислоты) равен нулю. Это обстоятельство свидетельствует о наличии очень важного ограничения по отношению к тем результатам, которые могут быть получены при работе с элементами без жидкостных соединений, содержащими небуферные растворы. Если не учитывать специальных термодинамических данных, эти элементы дают значение величины или растворах солей при нулевой концентрации слабо11 кислоты ( 1 = 0). В растворе, содержащем конечное количество слабого электролита, с помощью таких элементов нельзя определить величину Ад. С другой стороны, этот метод показывает путь решения данной задачи, так как он указывает, что для этого необходимо знать влияние среды — слабой кислоты —или зависимость от т . Когда будут выполнены дальнейшие исследования в этой области и установлены общие законы влияния изменения состава растворителя, тогда, можно будет определить значение /Пц в кислотно-солевых растворах различного состава, а также важную величину гпл в буферных растворах. [c.484]

    Влияние буферной емкости рлствора. Индикаторы, применяемые для определения pH растворов, сами являются кислотами или основаниями, и если исследуемый раствор имеет малую буферную емкость (чистая вода, растворы нейтральных солей в чистой воде, растворы очень слабых кислот или оснований и т. п.), то индикатор может сильно изменить его pH. Если, например, к 10 мл чистой воды (pH 7) прибавить 0,1 мл 0,04%-ного раствора метилового красного, то уже такое малое количество индикатора (К нц. = 1-10 5) изменит pH воды от 7,0 до 5,0. [c.438]

    Борковский и др. [94] разделяли основания ДНК, аденин, гуанин, цитидин и тимин методом электрофореза на слоях агарового геля, используя 0,1 М буферный раствор ацетата натрия и уксусной кислоты (pH 3,7). Электрофорез, проводили в течение 45 мин при напряженности поля 5—7 В/см. Образец получали в результате 60-минутного гидролиза ДНК 72 %-ной хлорной кислотой, а после гидролиза выпаривали хлорную кислоту, освобождая основные соли. Цанев и др. [95] изучали влияние концентрации РНК, величины pH, температуры, состава буферного раствора и концентрации геля на фракционирование и подвижность РНК при электрофорезе на слоях геля. Для электрофоретического разделения АМР, ADP, АТР [96] и смесей аденина, аденозина, адениловой кислоты и ди- и трифосфатаденозинов [97] применяли также гель агарозы. [c.136]

    Хегглунд [94] обрабатывал в течение разных периодов времени еловую древесину, предварительно сульфированную в течение 2—5 ч при 128°, буферным раствором фосфорнокислого натрия и разбавленной фосфорной кислотой при 150°. На основании анализов на серу и метоксилы он заключил, что низкосуль-фированный лигнин легко конденсируется под влиянием кислых катализаторов. Каталитическое действие имеет место тогда, когда частично сульфированная древесина нагревается с фосфорной кислотой. С буферным раствором фосфата натрия лигносульфоновая кислота превращалась в натриевую соль в результате обмена оснований. [c.366]

    В рассмотренном выше случае восстановления дианионов малеи-новоЁ кислоты в небуферном растворе увеличение его ионной силы приводит главным образом к повышению приэлектродной концентрации электрохимически неактивной формы деполяризатора — дианионов малеиновой кислоты, а также ионов гидроксила. Увеличение концентрации последних в известной мере снижает эффект ускорения приэлектродного процесса в целом. При работе же в буферных растворах повышение их ионной силы (при сохранении постоянным их pH) обусловливает некоторое выравнивание pH между приэлектродной областью и объемом раствора, приводящее к увеличению pH вблизи отрицательно заряженной поверхности электрода [9, 85], что, в свою очередь, приводит к снижению скорости протонизации. В любой буферной системе кислота — основание (ОН и В) заряд кислотной формы ВН всегда на единицу выше, чем у основной В, поэтому вследствие действия электростатических сил концентрация заряженной ВН в прикатодном пространстве намного выше, а заряженной В — намного ниже, чем в объеме раствора а так как одна из форм ВН или В всегда заряжена, то кислотность приэлектродной области значительно выше, чем в глубине раствора. С ростом же ионной силы (при сохранении pH раствора в объеме постоянным) из-за снижения абсолютной величины фх-нотен-циала различие между величинами pH в приэлектродной области и в объеме раствора, как уже отмечалось, становится меньше вследствие повышения pH приэлектродного слоя. Количественный расчет влияния двойного слоя при изменении ионной силы буферного раствора на скорость электродного процесса, ограниченного предшествующей объемной реакцией протонизации, был выполнен [86] для случая предельного каталитического тока водорода, вызываемого пиридином. [c.30]

    Ионное равновесие значительно менее чувствительно к изменению давления, чем к изменению температуры. Изменения ран, обусловленные обычными колебаниями давления атмосферы, пренебрежимо малы. Действительно, Гибсон и Лёфлер [16] установили, что можно ожидать заметного влияния очень высоких давлений только в том случае, когда растворы содержат малодиссо-циированные кислоты и основания. Они определили изменение pH фосфатного, боратного, карбонатного и аммонийного буферных растворов при увеличении давления от 1 до 1200 бар, наблюдая изменения в адсорбционных спектрах индикаторов кре-золового красного и бромфёнолового синего. Концентрация ионов водорода в слабокислых буферных растворах увеличивалась примерно на Ю07о при увеличении давления от 1 до 1000 бар, в то время как в аммонийных растворах она уменьшалась на ту же величину. Эти результаты, в общем, согласуются с измерениями проводимости, сделанными Брандером [17]. [c.113]

    Гидроксиламинолиз простых амидов при пониженных температурах интересен тем, что в результате него образуются наиболее устойчивые производные карболовых кислот. Реакция между гидр-оксиламином и амидом может катализироваться протонированной формой гидроксиламина МНзОН, свободным основанием и различными буферными растворами. Исследование рН-зависимости и концентрационной зависимости скорости реакции указывает на преобладание основного катализа над влиянием повышения концентраций реагентов в процессе замораживания. Предполагают, что экспериментальные данные не могут быть объяснены концентрационным эффектом и за ускорение реакции ответственна кристаллическая решетка льда. [c.153]

    Эти опыты проливают также свет и на рещение рассмотренного в предыдущем параграфе вопроса о разложении диазосоединений в спиртовой среде.Вероятно, что полностью отвергавшаяся Корнблюмом возможность замещения диазогруппы водородом при определенных условиях все же имеет место. Превращение ионов диазония в эфиры фенолов и восстановительное разложение диазосоединений не являются реакциями, общими по своему характеру. Замещение алкоксильной группой связано с превращениями свободного катиона, а восстановительные процессы —с распадом ковалентно-построенного дн-азосоединения. Практически это означает, что получение фенетола следует вести в кислых растворах в присутствии анионов сильных минеральных кислот. Напротив, восстановительное разложение диазосоединений выгодно проводить в нейтральных или слабощелочных средах при высокой концентрации таких сопряженных оснований, которые сравнительно легко образуют ковалентные диазосоединения в качестве промежуточных веществ (ацетат и др.). Работы Де Тара отчетливо показали, что при таких условиях гомолитические реакции могут быть осуществлены и с солями диазония. Так, молекулярный кислород в значительной степени оказывает влияние на ход разложения фторборатов диазония в Метанольных ацетатных буферных растворах. Кислород, как и следовало ожидать, ери гомолитиче-ских реакциях уменьшает скорость разложения диазоацетата, образующегося в качестве метастабильного промежуточного соединения. В то же время присутствие кислорода способствует образованию другого рода продуктов ( диазосмол ). [c.97]

    Кинетические токи наблюдаются при полярографировании альдегидов — производных пиридина. И. Фольке [205] показал, что при восстановлении изомерных формилпиридинов предельные токи определяются скоростью дегидратации альдегидной группы, причем на эту скорость каталитически влияют и кислоты и основания, что обусловливает сложную зависимость высоты волн от pH растворов и их буферной емкости. При полярографировании аминоальдегидов и кетонов проявляется влияние не только гидратации, но и нротонизации их молекул по атому азота. [c.39]


Смотреть страницы где упоминается термин Буферные растворы влияние кислоты или основани: [c.113]    [c.113]    [c.258]    [c.388]    [c.608]    [c.229]    [c.106]    [c.889]    [c.106]    [c.622]    [c.201]    [c.387]    [c.471]    [c.291]    [c.276]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.119 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Буферная

Буферные растворы

Влияние оснований

Основания и кислоты



© 2025 chem21.info Реклама на сайте