Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция энергия

    Абсорбция газов может быть разомкнутым и циркуляционным процессом. В первом случае жидкий поглотитель используется однократно без десорбции уловленных соединений. Во втором случае поглотитель циркулирует в цепи абсорбция — десорбция. Растворимость в поглотителе извлекаемого соединения определяет выбор схемы очистки. От этого параметра зависят количество поглотителя, расход энергии и теплоты на регенерацию поглотителя, габариты аппаратов. [c.488]


    Скорость десорбции. Энергия активации десорбции физически адсорбированных соединений (при условии низкой пористости адсорбента) редко превышает несколько килоджоулей на моль. Энергия активации десорбции хемосорбированных соединений [c.264]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]

    Энергии связей водорода с металлическими катализаторами (N1, Р1, Р(1) имеют значения около 205,0 кДж/моль, если процесс лимитируется стадией адсорбции, и 225,7 кДж/моль — стадией десорбции. Энергии связей дейтерия немного выше. Прямые калориметрические и электрохимические измерения дают более высокие значения. [c.94]

    Представление о том, что на ртути выделение водорода совершается по механизму Фольмера — Гейровского (замедленный разряд с последующей электрохимической десорбцией водородных атомов), разделяется в настоящее время большинством электрохимиков. Необходимо, однако, отметить, что по Кобозеву, который отрицает возможность замедленного протекания разряда, перенапряжение водорода на ртути является результатом избыточной энергии свободных атомов водорода, эмитируемых с ее поверхности. Эмиссия свободных водородных атомов (— это, по Н. И. Кобозеву, наиболее эффективный путь отвода атомов водорода с по- [c.413]

    Интересно, отметить, что так как сорбция является экзотермической в большинстве случаев, то скорость сорбции обычно превышает скорость десорбции. Это означает, что молекулы продукта реакции в гомогенной фазе обычно находятся в равновесии с адсорбированной фазой. Это не всегда справедливо в отношении реагирующих веществ, так как сорбция во многих случаях является химической реакцией с атомами поверхности. Поэтому сорбция может иметь некоторую энергию активации и протекать очень медленно. [c.536]


    Следует еще раз подчеркнуть, что все рассуждений о механизме адсорбции и кинетике контактных реакций на неоднородной поверхности базируются на гипотетических предположениях, касающихся 1) числа активных участков с различной адсорбционной способностью 2) зависимостей между характеризующими эти активные места величинами, такими как теплота адсорбции, энергия активации адсорбции и энергия активации десорбции. [c.281]

    Следует подчеркнуть, что поскольку основными физико-химическими процессами в газовой хроматографии являются процессы адсорбции и десорбции (или растворения и испарения), слишком сильно адсорбирующие адсорбенты (или слишком хорошо растворяющие жидкости) оказываются непригодными, поскольку они значительно задерживают процессы десорбции. Необходимо, чтобы процессы десорбции происходили достаточно быстро, иначе соответствующий компонент не успеет пройти колонку за удобное для анализа время. В этом отношении задача га-зо-хроматографической колонки отличается от задачи противогаза (в противогазе необходимо как можно прочнее удержать компонент, отравляющий воздух, т. е. резко увеличить энергию его адсорбции, замедлить его десорбцию). [c.546]

    Изменение свободной энергии для десорбции и адсорбции можно вычислить по измерениям межфазного натяжения при низких концентрациях [ИЗ], а для всего процесса (0°—0°) — по предельным значениям коэффициента распределения. [c.55]

    Удельная скорость сушки и десорбции может быть увеличена при импульсном подводе энергии СВЧ. Наибольшая скорость достигается при прочих равных условиях, когда длительность паузы между импульсами соизмерима со временем натекания инертного носителя в поры. Полученные закономерности легли в основу способа десорбции растворителя из активного угля [44]. [c.169]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Необходимо отметить, что уравнения, по которому можно определить 8, нет, хотя 8 входит в некоторые из приведенных уравнений. Принято считать б" экстенсивным (зависящим от размера системы) коэффициентом уравнения внутренней энергии. В адсорбционных процессах, где главную роль играет поверхностная энергия, с помощью энергетического баланса, который определяется теплотой адсорбции и теплотой десорбции, можно учитывать с. Пренебрежение величиной с упрощает математические расчеты. [c.19]

    СОРБЦИЯ (от лат. зогЬео — поглощаю) — поглощение вещества из окружающей среды твердыми или жидкими телами. Поглощающее тело (поглотитель) наз. сорбентом, поглощаемое вещество — с о р б а -том, пли сорбтивом. Виды С. абсорбция, адсорбция, хемосорбция и капиллярная конденсация. Абсорбция— поглощение сорбата (точнее — абсорбата) всем объемом сорбента (точнее — абсорбента). При абсорбции молекулы абсорбата диффундируют (см. Диффузия) через поверхность раздела фаз и распространяются по объему абсорбента, внедряясь между молекулами или узлами кристаллической решетки. Если абсорбент — жидкое те.то, то абсорбция из газовой фазы тождественна растворению, а абсорбция из несмешивающейся жидкой фазы — экстракции. Поглощение газов металлами, а также некоторыми другими материалами наз. окклюзией (см. также Абсорбция). Адсорбция — поглощение сорбата (точнее — адсорбата) поверхностью сорбента (точнее — адсорбента). При физической, т. е. не сопровождающейся хим. превращениями, адсорбции молекулы адсорбата удерживаются у поверхности силами межмолекуляр. взаимодействия. Они образуют адсорбционный слой толщиной в одну (моно-молекулярная адсорбция), две или несколько молекул (нолимолекуляр-ная адсорбция), сохраняя способность диффундировать вдоль поверхности и покидать ее вследствие теплового движения (см. Десорбция). Энергия связи адсорбированных молекул о поверхностью адсорбента при физ. адсорбции обычно составляет несколько ккал моль (см. Адсорбция). X е м о с о р б ц и я — поглощение сорбата с образованием различных химических соединений в объеме или поверхности сорбента. Хемосорбция обычно сопровождается тепловым эффектом в несколько десятков, иногда сто и более ккал/моль (см. также [c.416]

    После измерения изобар температуру катализатора снижали до комнатной. После этого начинали проводить измерения по десорбции. Для некоторых катализаторов определяли энергию активации десорбции. После опыта при комнатной температуре температуру катализаторов ступенчато повышали и при каждой температуре проводили аналогичные опыты по десорбции. Энергии активации десорбции, найденные для ZnO(I), VgOg и FejOg, приведены в табл. 1. Результаты опытов по десорбции для ZnO, СгаОд и VjOg представлены на рис. 2. Видно, что десорбируемое количество проходит через максимум при некоторой определенной температуре, например при 100 С для ZnO. На основании этих данных можно предположить, что, наряду с физической адсорбцией, происходит также хемосорбция. Было найдено что энергия активации десорбции, измеренная при температурах ниже О С, равна примерно 10 ккал моль или меньше, что соответствует [c.405]


    При получении метанола на базе природного газа очистка синтез-газа сводится к освобождению его от "углекислоты. Это может быть осуществлено либо водной отмывкой под давлением, либо абсорбцией углекислоты раствором моноэтаноламина. При большом содержании з глекислоты в газе (свыше 10%) обычно применяют водную очистку. Процесс проводят при давлении 25—28 ат в абсорбере, заполненном кольцами Рашига. Отмытый от СОг газ отводится с, верха абсорбера. Вода и растворенные в ней газы направляются на десорбцию, которая осуществляется редуцированием давления до атмосферного в агрегате мотор — насос — турбина. В этом агрегате рекуперируется до 40% энергии, затраченной на подачу воды в аппараты высокого давления. [c.18]

    Первый вид обратной связи определяется зависимостью константы скорости реакции от степени покрытия поверхности адсорбцированными веществами. В основе механизма действия обратной связи лежит предположение о зависимости энергии активации различных стадий реакции от степени покрытия поверхности реагирующими веществами. В этом случае при изменении степени покрытия поверхности реагирующими веществами скорость реакции может изменяться в значительных пределах, являясь на одном промежутке времени больше скорости адсорбции, на другом — меньше, что и приводит к периодическому изменению концентраций реагирующих веществ на поверхности катализатора. Данный подход положен в основу описания автоколебаний в реакции окисления окиси углерода на платиновом катализаторе [132]. При этом было учтено изменение энергии активации со степенью покрытия поверхности реагирующими веществами не только стадии образования продукта реакции, но и стадий десорбции окиси углерода и адсорбции кислорода. [c.318]

    Адсорбция исходных веществ, протекание которой требует энергии активации, отвечающей возрастанию энтальпии на участке 1—а, приводит к энергетическому уровню 4. Далее образуется ак-1ИВНЫЙ комплекс (а"), который адсорбирован на катализаторе (процесс 4 —а"). Затем образуются продукты реакции (а" —5), также адсорбированные на катализаторе, которые покидают поверхность катализатора (десорбции отвечает участок кривой 5 — -а" -2). [c.226]

    Опыт эксплуатации установок Ригаз1у НЯ показал, что они потребляют на 25—30% меньше энергии, чем аналогичные установки с неподвижным слоем адсорбента. Рекуперат, получаемый с их помощью, отличается высоким качеством в установках типа N он не нуждается в очистке перед повторным использованием. В результате косвенного нагрева, установки работают в широком интервале температур десорбции, и процесс, следовательно, применим для извлечения высококипящих растворителей. Использование минимального числа движущихся элементов (воздуходувки и эрлифта) обеспечивает высокую надежность установки и относительно небольшие затраты на ее ремонт. Уста- [c.99]

    Расход тепла на регенерацию складывается из расхода тепла на подогрев адсорбера и его содержимого до температуры и на десорбцию адсорбированных компонентов (воды, углероводородов, примесей). Теплота десорбции определяется скрытой теплотой испарения и энергией, затрачиваемой на преодоление сил смачивания. Обычно величина этой энергии принимается равной 1,35 скрытой теплоты парообразования. Для проектных расчетов теплоту десорбции воды можно принять равной 777,82 ккал/кг, а углеводородов — 111,11 ккал/кг. Остальные примеси практически не десорбируются, и тепловые затраты на их десорбцию при составлении общего теплового баланса регенерации не учитываются. [c.252]

    На рис. 4.1, а пунктирная кривая З -З отвечает малым значениям когда адсорбционная стадия требует большей затраты энергии, а десорбция является экзотермической пунктирнгш прямая 4-4 отвечает обратному случаю, а 3-3 описывает оптимальные условия, когда затраты энергии на образование и распад мультиплетного комплекса одинаковы и энергия активации их каталитического превращения будет минимальной. [c.85]

    Принцип энергетического соответствия Баландина несомненно полезен, но использование его ограничено, поскольку энергетика процесов обычно неизвестна, промежуточнызс комплексов частс образуется несколько и приходится иметь дело с селективностью., стабильностью, а не с активностью как таковой. Однако изучение явлений отравления, закоксовывания, физической блокировки устьев пор и каталитической коррозии может позволить оценить энергию образования промежуточного комплекса и его стабильность, если от суммарного значения энергий образования промежуточного комплек са и хемосорбции реагентов вычесть последнюю или от суммарного значения энергии распада промежуточного комплекса и десорбции отнять энергию десорбции продуктов. [c.85]

    Чтобы каталитическая реакция протекала быстрее гомогенной некаталитической, необходимо, чтобы катализатор повышал степень компенсации энергии разрывающихся связей энергией образую1цихся. На рис. 4.2 показано изменение энергии на различных стадиях простой экзотермической реакции. .ом> - адс> де это энергия активации гомогенной реакции, адсорбции реагентов на катализаторе, образования активированного комплекса и десорбции продуктов соответственно и Чдес - экзотермическая теплота адсорбции и эндотермическая теплота десорбции А Я - общее изменение энергии в реакции, ко- [c.86]

    А В -гомогенный активированный комплекс - энергия активации образования А В е — энергия активации активи])0ванн0й адсорбции более трудно сорбируемого исходного компонента вр - энергия активации десорбции продукта — энергия активации образования активированного комплекса (реакции) АВ К q, — теплота экзотермической десорбции Ан — общее изменение энергии и реакции, т.е. разность энтальпий реагентов и продукта экзотер>дической реакции А КВ К - адсорбированные реагенты и продукты реакции [c.87]

    Принцип компенсации энергии разрывающихся связей энергие образующихся связей особенно полезно приме нять при совместном рассмотрении нескольких одновременно протекающих реакций по так называемому слитному механизму (например, сложных реакци11 перераспределения водорода, деструктивной поликонденсации, гидрокрекинга, дегидроциклизации парафиновьЕх углеводородов) или когда трудно установить, какая стадия реакции является лимитирующей распада или десорбции. [c.87]

    Таким образом, модифицирующее действие соединений рения и иридия заключается в образовании сплавов с платиной, увеличением энергии распада мультиплетного комплекса и десорбции непредельных, которые, попадая на металлические участки рения или иридия, гидрируются за счет спилловера атомного водорода до более стабильных соединений, или, попадая на участки носителя, инициируют топографическую цепную реакцию деструктивной поликонденсации с образованием кокса. Поэтому на диаграмме ДТА отсутствует экзотермический пик при 200 С, хв актерный для горения кокса на платине, наблюдается слабый пик при 380 С, обусловленный горением коксогенов на металлических центрах рения или иридия, и самый значительный пик при 500 С, характерный для горения кокса на носителе. [c.154]

    Здесь /Со — предэкспонеициальный коэффициент уравнения, имеющий ту же размерность, что и К, — газовая постоянная <7 —энергия активации,, рассчитываемая при постоянных значениях относительной величины десорбции (у = 0,5) по кинетическим кривым десорбции у = / (т)  [c.89]

    Процесс физической адсорбции, поскольку он заключается а ко[ цептрировании молекул адсорбата, сопровождается выделепи-ем энергии, хотя и незначительным. Скорость процесса адсорбции пропорциональна концентрации адсорбата в фазе, из которой происходит поглощение. По мере лечения адсорбции молекулы адсорбата накапливаются на поверхности адсорбента и тем самым создаются условия для протекания обратного процесса — отрына молекул от поверхности адсорбента, который называется десорбцией и сопровождается поглощением энергии. Когда скорость десорбции становится равной скорости адсорбции, устанавливается подвижное равновесие, которое характеризуется при данной температуре соотношением величины адсорбции и концентрации адсорбата. Адсорбционное равновесие может быть сдвинуто посредством изменения концентрации адсорбата и температуры. Очевидно, что процессу адсорбции благоприятствует понижение температуры. [c.106]

    Скорости адсорбции и десорбции приведены для модели адсорбции, основанной на следующих допущениях (модель Ленг-мюра) адсорбированные частицы связаны с определенными центрами на поверхности, каждый из которых может присоединять одну частицу все центры поверхности энергетически равноценны и одинаково доступны для адсорбции энергия адсорбированных частиц не зависит от присутствия или отсутствия других частиц на соседних центрах. [c.146]

    При физической адсорбции молекулы адсорбата сохраняют свою индивидуальность и удерживаются на поверхности адсорбента ван-дер-ваальсовыми силами. Попадая на поверхность адсорбента, молекула адсорбата удерживается силовым полем поверхности в течение некоторого времени, а затем десорбируется. В начальный период скорость адсорбции намного превышает скорость десорбции, но постепенно эта разница уменьшается, скорости выравниваются, т. е. наступает адсорбционное равновесие, и молекулы адсорбата образуют на поверхности адсорбента адсорбционный слой. При этом свободная энергия поверхности (АР) уменьшается. Адсорбированные молекулы имеют две степени свободы, т. е. могут перемещаться вдоль поверхности адсорбента. До адсорбции эти же молекулы имели три степени свободы. [c.38]

    Такие представления первоначально были развиты на основании данных по адсорбции и десорбции газов (паров) эти процессы были проведены на спрессованных и неспрессованных порошках из непористых шаровидных частиц, на непористых образцах кремнезема (кварц и кварцевое стекло) и на силикагелях [72]. В дальнейшем предложенная структура ксерогелей была многократно подтверждена с помощью электронно-микроскопических исследований [73—75]. С точки зрения корпускулярной теории строения скелета ксерогелей спекание катализатора при термопа-ровой обработке можно представить как результат изменения размеров, формы, взаимного расположения и связи первичных частиц, происходящего вследствие переноса вещества этих частиц [75]. Перенос происходит в направлении уменьшения свободной энергии дисперсной системы и приводит к сокращению поверхности, а, следовательно, к увеличению стабильности системы. [c.54]

    Температурные зависимости реакций, входящих в детальный механизм, часто сильно различаются. Предположим, что энергии активации реакцп11 адсорбции, соответствующие (X), малы настолько, что можно положить О, Ег 0. Пусть, кроме того, в (XI) энергия активации также мала, так что Е 0. Энергии активации десорбции достаточно велики 1=120—250 кДж/моль Е2 — 8О— 150 кДж/моль. Энергия активации взаимодействия веществ А2 и Вг занимает промежуточное положение между энергиями активации адсорбции и десорбции 3 = 40—150 кДж/моль. Квазистационарный периодический режим будет, в частности, выгоден в тех областях изменения температуры где кинетические за- [c.59]

    Для очистки газов применяются разнообразные жидкости, оценка которых производится с учетом следующих показателей 1) абсорбционная емкость (т. е. растворимость основного извлекаемого компонента) в зависимости от температуры и давления. Этот показатель определяет экономичность очистки, т. е. число ее ступеней, расход энергии на циркуляцию, расход теплоты на десорбцию газа и т. д. При десорбционном способе регенерации целесообразны растворители с высоким температурным коэффициентом изменения растворимости /(/+ю//С< 2) селективность, характеризуемая соотношением растворимостей разделяемых газов, а также скоростей пх абсорбции. Чем более различны эти показатели, тем вьшJe селективность поглотителя 3) давление паров должно быть минимальным, чтобы возможно менее загрязнять очищаемый газ парами поглотителя 4) дешевизна 5) отсутствие корродирующего действия на аппаратуру. [c.234]

    Состав сплава при охлаждении Ф зорый состав Фэзовый o TaB Содержание меди в катализаторе, % Удельная поверх- Размеры общее содержание десорбиров. водорода, см /г катализатора Энергия активации десорбции, кДж/моль  [c.58]


Смотреть страницы где упоминается термин Десорбция энергия: [c.426]    [c.64]    [c.81]    [c.114]    [c.426]    [c.446]    [c.217]    [c.448]    [c.55]    [c.15]    [c.154]    [c.319]    [c.178]    [c.105]    [c.145]    [c.66]   
Кинетика и катализ (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни адсорбированных атомов зависимость от энергии десорбции

Десорбция

Десорбция энергия активации

Определение энергии активации процесса десорбции Ed с помощью программируемой термодесорбции

Свободная энергия десорбции

Теплоты адсорбции и десорбции и величины энергий активации при хемосорбции на металлах

Энергия десорбции, эффективная



© 2025 chem21.info Реклама на сайте