Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила отталкивания притяжения

    Выделением энергии сопровождается присоединение одного электрона к атомам кислорода, серы, углерода и некоторым другим. Таким образом, для указанных элементов силы притяжения к ядру дополнительного электрона оказываются большими, чем силы отталкивания между дополнительным электроном и электронной оболочкой атома. [c.35]


    Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить вводившиеся межмолекулярные потенциалы. Наиболее надежные результаты получены для простых жидкостей, когда достаточно учесть сферически симметричные силы дисперсионного притяжения и борновского отталкивания, например в форме известного потенциала Леннарда — Джонса. [c.116]

    Дальтон использовал данные Гей-Люссака для доказательства того, что равные объемы газов не содержат равного числа молекул это было еще одной его ошибкой, подобно правилу простоты. Рассуждения Дальтона иллюстрируются при помощи рис. 6-6,я. По иному пути пошел итальянский физик Амедео Авогадро (1776-1856). Он исходил из предположения, что равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. Как показывает рис. 6-6,6, это предположение требует, чтобы газы таких реагирующих между собой элементов, как водород, кислород, хлор и азот, состояли из двухатомных молекул, а не просто из изолированных атомов. Если бы идеи Авогадро, опубликованные им в 1811 г., сразу же получили признание, это избавило бы химию от полувекового периода путаницы. Однако для большинства ученых идеи Авогадро представлялись всего лишь шатким предположением (равное число молекул в равных объемах), основанным на еще более шатком допущении (о двухатомных молекулах). В те времена представления о химической связи почти всецело основывались на учете сил электрического притяжения или отталкивания, и ученые с трудом могли представить себе, чтобы между двумя одинаковыми атомами могло возникнуть какое-либо другое взаимодействие, кроме отталкивания. Но если они все же притягиваются друг к другу, почему же тогда не образуются более сложные молекулы, как, например, Н3 или Н4 Шведский химик Йенс Якоб Берцелиус (1779-1848) пытался использовать данные о парах серы и фосфора, чтобы опровергнуть идеи Авогадро. Однако Берцелиус не понимал, что в этих случаях он имел дело как раз с примерами еще более сложных агрегатов (8 и Р4). Сам Авогадро не мог помочь делу он пользовался настолько путаной терминологией, что иногда казалось, будто он говорит о расщеплении атомов водорода (атомы он называл простыми молекулами ), а не [c.285]

    Известно, что при соударении частиц действуют как силы притяжения, так и силы отталкивания. Притяжение обусловлено проявлением ван-дер-ваальсовских сил отталкивание—наличием одноименного электрического заряда у всех частиц данного золя и упругих жидких сольватных (гидратных) прослоек между ними, действующих в обратном направлении сближению частиц. [c.316]


    В прослойках воды между гидрофильными поверхностями структурные силы вызывают отталкивание поверхностей, здесь П5>0. Гидрофобные поверхности испытывают в воде силы структурного притяжения (Ш>0). Из экспериментов и теоретического рассмотрения следует, что структурные силы экспоненциально зависят от толщины прослойки  [c.15]

    Допустим, мы сближаем протон Нд и атом водорода Нв (протон Нв плюс электрон е ). По мере сближения этих частиц между ними возникают электростатические силы двух типов — силы притяжения электрона к обоим ядрам и силы отталкивания между ядрами (рис. 20). [c.43]

    Рассматривая систему двух молекул, взаимодействующих друг с другом, мы не думаем о зависимости величины сил отталкивания или притяжения от расстояния между молекулами г, а пользуемся зависимостью потенциальной энергии Ер от г. Когда энергия Ер зависит только от расстояния между молекулами, интересующая нас величина сил взаимодействия двух молекул равна йЕр1(1г. Установлено, что Ер = /(ц, а), т. е. Ер зависит от дипольного момента и поляризуемости молекул. [c.70]

    Простейшим случаем является адсорбция неполярной молекулы на неполярном же адсорбенте при этом действуют лишь электрокинетические (дисперсионные) силы притяжения и силы отталкивания. [c.487]

    Здесь г—расстояние между центрами взаимодействующих частиц, С—константа дисперсионного притяжения. В—константа отталкивания. Минус шестая степень для энергии дисперсионных сил притяжения получается теоретически (в более точных расчетах учитывается еще член с минус восьмой степенью). Минус двенадцатая степень для энергии сил отталкивания введена как удачное [c.487]

    Принцип) ально общее взаимодействие в молекулярных системах рассматривается в квантовой механике с единой точки зрения, однако в приближенной теории, которая излагается в этой главе, практически удобнее общее взаимодействие подразделить на различные виды сил притяжения и иа силы отталкивания. [c.487]

    Когда мениск объемной воды контактирует с а-пленками, значения интеграла в (13.3) могут быть отрицательны в связи с частичным заходом изотермы П(/г) в область П<0. Смена знака расклинивающего давления (кривая /) связана с различными значениями потенциалов г()1 и р2 поверхностей пленки. Для расчета изотермы Пе(/г) в этой области значений к использованы табулированные решения теории электростатических сил при условии постоянства потенциалов. При /г<60 нм электростатические силы (при гр1 г 52) становятся силами притяжения (ПеСО). При дальнейшем уменьшении толщины пленок снова появляются силы отталкивания, но они связаны уже с действием молекулярных (Пт>0) и структурных (П5>0) сил. Расчеты по уравнению (13.3) с использованием изотермы / (см. рис. 13.3) приводят к значению краевого угла воды на кварце 00 5°, близкому к экспериментальному, что служит подтверждением теории. [c.217]

    На рис. 12-2 показано, как зависит от расстояния между двумя атомами Н потенциальная энергия молекулы Нз- Сушествует промежуточное равновесное расстояние, на котором силы притяжения и отталкивания уравновешиваются. Если атомы раздвигаются, силы притяжения сводят их снова. Если же они слишком сближаются, силы отталкивания возвращают их на место. Поведение двух атомов водорода в молекуле Н таково, как если бы они были связаны пружинкой. Наличие положения равновесия как раз и имеется в виду, когда говорят о длине связи (см. рис. 12-1, Э и 12-2). [c.512]

    Ясно, что Уд и параметрически зависят от (о// с) и имеют максимальное значение при некотором фиксированном значении Нс/о). Физически это означает, что столкновение при очень больших зг не приводит к связанному столк-новительному состоянию, так как сумма центробежных сил и сил отталкивания всюду выше сил притяжения, и комплекс не образуется (рис. 27, 1). Из (4.3) можно по- [c.255]

    Рассмотрены процессы агрегации тонкодисперсных частиц суспензии [212]. Указано, что под коагуляцией следует понимать непосредственное соединение тонкодисперсных частиц в агрегаты, происходящее, когда силы притяжения (силы Ван-дер-Ваальса) больше сил отталкивания, обусловленных одноименными электрическими зарядами частиц результирующие силы зависят от расстояния между частицами, в связи с чем коагуляция интенсифицируется с повышением концентрации частиц и перемешиванием суспензии. Отмечено, что под флокуляцией надлежит понимать соединение в агрегаты менее тонкодисперсных частиц после прибавления в суспензию высокомолекулярных полимеров с вытянутой молекулой и большим числом активных групп действие таких полимеров состоит в соединении отдельных частиц мостиками из молекул полимера получающиеся при этом агрегаты достаточно рыхлые и проницаемые для жидкости. [c.193]

    Особенно недопустимо пренебрежение этими силами три повышенных и высоких давлениях, так как с возрастанием давления сначала начинают сказываться силы притяжения между молекулами газовой фазы, а при более высоких давлениях— силы отталкивания. [c.10]

    Рассматривая зависимость компонентов движущей силы от к, замечаем, что для работы силы отталкивания она имеет экспоненциальный характер, для работы силы притяжения — степенной, третий член вовсе не зависит от к. При к->-0 работа силы отталкивания стремится к постоянной величине, тогда как работа силы притяжения стремится к бесконечности. Следовательно, на малых расстояниях преобладает притяжение. На больших расстояниях также преобладает притяжение, поскольку степенная функция убывает значительно медленнее, чем экспонента. Только на средних расстояниях может преобладать отталкивание при малых значениях параметра Дебая (при больших в сильных растворах электролитов силы отталкивания малы) [27]. На этих средних расстояниях, где из энергий взаимодействия преобладает работа силы отталкивания, вопрос об агрегации решает связь с третьим слагаемым. Если оно меньше по величине работы силы отталкивания на этих расстояниях, то система становится агрегативно устойчивой (т. е. частицы сближаются до расстояния к, но не могут преодолеть сил отталкивания и расходятся без взаимодействия), если больше, то агрегация возможна. [c.86]


    Знак у величины энергии определяется характером сил взаимодействия. Так, знак у энергии сил притяжения — отрицательный, знак у энергии сил отталкивания — положительный. [c.110]

    Изложенные закономерности как в отношении состава, так и в отношении энергии образования атомных ядер объясняются особенностями взаимодействия нуклонов внутри ядра. В настоящее время принято считать, что во внутриядерных силах важнейшую роль играет интенсивное взаимодействие между протонами и нейтронами. Силы, действующие в этом случае, проявляются при расстояниях 10 2 см и очень быстро убывают с увеличением расстояния (обратно пропорционально не второй, а значительно более высокой степени его). Наряду с этим взаимодействием сказывается и взаимное отталкивание протонов внутри ядра. Это отталкивание выражается законом Кулона и убывает с увеличением расстояния значительно медленнее. В результате этого у более тяжелых ядер (вследствие большего размера их) силы взаимного притяжения частиц, из которых они состоят, ослабляются, а взаимное отталкивание протонов проявляется относительно сильнее Энергия образования таких ядер из нейтронов и протонов возрастает уже не пропорционально массе, а в меньшей степени, и потому тяжелые ядра менее устойчивы. В связи с этим для тяжелых ядер имеет большое значение наличие указанного выше избытка нейтронов, так как тем самым увеличивается среднее расстояние между протонами и ослабляется их взаимное отталкивание. [c.54]

    Молекулярная теория трения была предложена Дезагюлье более 100 лет назад, а развитие получила только в XX в. в трудах Гарди, Томлинсона, Дерягина и других ученых [236]. Наибольший вклад в разработку этой теории внес Б. В. Дерягин. В соответствии с его теорией трение в случае гладких поверхностей вызывается молекулярной шероховатостью, т. е. силами отталкивания электронных оболочек контактирующих тел, а силы прилипания, или молекулярного притяжения, должны рассматриваться как поправки, объясняющие отклонения от закона Амонтона . Формула, удовлетворительно подтверждающая эту теорию, имеет вид [c.224]

    При тесном сближении молекул, наряду с силами взаимного притяжения, начинают действовать и силы взаимного отталкивания, обусловленные взаимным отталкиванием электронов и другими эффектами. Эти силы начинают влиять лишь при тесном сближении молекул. Они очень быстро нарастают при дальнейшем уменьшении расстояния между молекулами и становятся преобладающими при достаточно малых расстояниях. Силы взаимного притяжения и отталкивания молекул в совокупности назы- [c.88]

    Если <1, то между молекулами преобладают силы притяжения, при условии, что >1 — между молекулами преобладают силы отталкивания. [c.231]

    Из этой схемы видно, что, изменяя значения (например, увеличивая) и /гг (уменьшая), представляется возможным регулировать (например, увеличивать) высоту межфазного слоя В. Регулирование значений 1 и / 2 может быть достигнуто в результате изменения баланса сил межмолекулярного взаимодействия в элементе структуры дисиерсной фазы и дисперсионной среде. Обозначим силы, действующие в слое А и приводящие к формированию элемента структуры дисперсной фазы, через Р—Ж (разность сил отталкивания притяжения), а в слое С — через Сммн. Существование межфазного слоя В обеспечивается разностью сил Сммн—Р+Ж- [c.69]

    Таким образом, можно сформулировать условия, ведущие к изменению смачивания водой твердых поверхностей. Влиять на вид изотерм П(/1) смачивающих пленок воды можно в основном за счет двух эффектов — зарядовых (Пе) и структурных (П ). Молекулярные силы, зависящие от спектральных характеристик воды и твердой подложки, мало чувствительны к составу водного раствора, температуре и заряду поверхностей. Поэтому для данной твердой подложки значения Пт практически постоянны. Влиять на структурные силы можно посредством трех факторов повышением концентрации электролита и температуры, что ведет к уменьшению структурного отталкивания, а также путем адсорбции молекул ПАВ, что изменяет характер взаимодействия молекул воды с твердой поверхностью. Ухудшение смачивания, необходимое для повышения эффективности флотации, достигается обычно путем адсорбции поногенных ПАВ. При этом важно, чтобы ПАВ избирательно адсорбировалось на одной из поверхностей пленки, придавая ей заряд, обратный по знаку заряду другой поверхности. В этом случае возникают силы электростатического притяжения (Пе<0), что сдвигает изотерму в область П-<0. Адсорбция ПАВ может приводить одновременно и к гидрофобизации твер- [c.217]

    Имеются еще доводы против приложения теории ДЛВО к эмульсионным системам. В прямых эмульсиях, стабилизированных ионными ПАВ, со значительным двойным электрическим слоем капельки органической фазы разделены водной прослойкой, а величины дисперсионных сил на единицу объема жидкости в полярных п неполярных жидкостях близки. Таким образом, на расстоянии > 10 А капельки органической жидкости не притягиваются друг к другу вандерваальсовыми силами. В случае обратных эмульсий в непрерывной фазе отсутствует двойной электрический слой (серьезных доказательств существования двойного слоя в этих эмульсиях не имеется). Не наблюдается параллелизма между стабильностью эмульсий по отношению к коалесценции и наличием двойного электрического слоя. Вопрос о силах притяжения и отталкивания капель эмульсий можно считать открытым и требующим как экспериментального, так и теоретического решения. При стабилизации эмульсий следует учитывать не только силы отталкивания — притяжения между каплями, но и адсорбцию ПАВ. Иначе трудно объяснить, почему только определенные ПАВ являются стабилизаторами эмульсий. Прим. редактора перевода.) [c.92]

    В слое с меньшей диэлектрической проницаемостью в окружении ионов свободная энергия растворителя ниже, чем в отсутствие электрического поля ионов. Для сближения ионов друг с другом необходимо взаимное проникновение в сольватную сферу, т. е. высвобождение определенного количества растворителя от влияш1я ионов. Для совершения такого процесса необходимо затратить работу, которая идет на преодоление сил отталкивания между ионами. (Последние обеспечивают стабильность растворов электролитов, поскольку в отсутствие сил отталкивания притяжение между зарядами благоприятствовало бы осаждению твердых солей.) Если учитывать такие силы отталкивания, то становится возможным интерпретировать положительное отклонение средних коэффициентов активности ионов от их значений согласно предельному закону Дебая — Хюккеля (гиперсетчатые цепные управления, рассчитанные методом Монте-Карло [51, 52]). [c.26]

    Силы молекулярного взаимодействия, обусловливающие и конденсацию, и адсорбцию, по имени голландского физика называют стами Ван-дер-Ваальса. Другое их название — физические силы. На рис. 2 показаны изменения физических сил отталкивания, притяжения и взаимодействия (результирующая сила) от расстояния между молекулами. Видно, что на расстоянии порядка полутора диаметров молекул находится яма —максимум результирующей силы притяжения, в которой над поверхностью располагается молекула адсорбата. Совокупность таких молекул образует первый слой адсорбата. На первый слой адсорбированных молекул может наложиться второй, третей и последующие слои. И все это будет адсорбция, но только... не очень интересная. Она слишком похожа на обычную конденсацию —взаимодействие [c.5]

    Как уже отмечалось, н полупроводника <, в отличие от металлов имеется два рода носителей заряда отрицательные--электроны и положительные — дырки. Поэтому проводпнкн по ряду свойств похожи на электролиты, где также присутствуют отрицательные и положител( Пые носители электричества — апиопы и катионы. Эта аналогия обнаруживается и и строении двойного электрического слоя, В ре.чультате наложения сил теплового движения и сил взаимодействия (притяжения и отталкивания) с поверхностью полупроводника внутри песо вблизи Гранины раздела устанавливается диффузное распределение зарядов и возникает так называемый объемный заряд. Таким образом, двойной электрический слой на границе раздела включает в себя как бы два слоя Гуи — один в раство- [c.274]

    Уравнение Ван-дер-Ваальса дает достаточно точные результаты для всех газов даже в области их критических температур и давлений. Однако при высоких давлениях, когда плотность газа велика или когда газ находится вблизи точки сжижения, это уравнение дает значительные отклонения от действительного поведения газа (ср. приведенные выше примеры 2 н 3). Отклонения объясняются тем, что при большой плотности газа иа его давление оказывают влияние не только силы взаимного притяжения, но также и силы взаимного отталкивания частиц, обусловленные внешними электронными оболочками этих частиц. Кроме того, здесь на реальное поведение газа в значительной мере также оказывают влияние неупругие столкновения его частиц и другие факторы. В связи с этим, кроме уравнения Ван-дер-Ваальса, был предложен ряд других, более сложных уравнений для реального состояния газов, на которых мы здесь останавливаться не будем, так как они для ггракгики технологических расчетов интереса не представляют. Уравнением Ван-дер-Ваальса в производственных расчетах также пользуются довольно редко наиболее удобными и более точными для этого являются энтропийные диаграммы (глава IV, стр. 103). [c.57]

    Еще более крупные частицы (до 10- см) наблюдаются в дисперсиях карбоната кальция, графита и дисульфида молибдена в маслах. Их объединяют между собой те же ван-дер-ваальсовы силы притяжения и электростатические силы отталкивания. [c.206]

    Потенциальный барьер отталкивания ( Умакс) возникает в результате суммирования сил отталкивания и притяжения, действующих ме>[ ду коллоидными часгицамн. Поэтому все факторы, влияющие иа ход кривых I п 2 (рнс. 103), приводят к изменению как величины (Уиакс, так и положения максимума (т. е. расстояния. х , соот бе гству ющего б макс). [c.334]

    Рассмотрим систему из двух атомов, ядра которых находятся иа расстоянии г друг от друга. Выясним, как зависит энергия такой системы от г. Принято считать равной нулю энергию системы в таком состоянии, в котором невозбужденные атомы находятся на бесконечно большом расстоянии друг от друга и не взаимодействуют между собой. Если атомы способны соединяться в молекулу, то при уменьшении расстояния между ними начинают действовать силм притяжения и энергия системы понижается. Это понижение продолжается до некоторого расстояния Го. При дальнейшем уменьщении г энергия начинает возрастать, что обусловлено действием сил отталкивания, которые сравнительно велики при малых расстояниях между атомами. Таким образом, графическая зависимость энергии от г выражается кривой /, имеющей минимум (рис. 1.30). [c.75]

    При сближении двух атомов водорода с параллельными спинами электронная плотность в пространстве между ядрами атомов понижается (рис. 13,6), что приводит к преобладанию сил отталкивания между атомами над силами притяжения и препятствует соед1П1ению их в молекулу. [c.67]

    Численные значения коэффициента а можно рассчитать по уравнению (12.43), если известен реальный объем, занимаемый газом при данном давлении Р. По численным значениям а строят для Г= onst кривые, которые приведены на рис. 54. Изменение знака а обусловлено изменением соотношения в силах притяжения и отталкивания между молекулами в изучаемой системе. Знак + отражает притяжение между молекулами, знак — определяет преобладание сил отталкивания над силами притяжения. [c.229]


Смотреть страницы где упоминается термин Сила отталкивания притяжения: [c.92]    [c.73]    [c.80]    [c.127]    [c.127]    [c.194]    [c.438]    [c.475]    [c.488]    [c.489]    [c.104]    [c.97]    [c.98]    [c.193]    [c.98]    [c.104]   
Общая химия (1974) -- [ c.44 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамические силы притяжения отталкивания

Отталкивание

Силы отталкивания



© 2025 chem21.info Реклама на сайте