Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы электросопротивление

    МЕТАЛЛИЧЕСКАЯ СВЯЗЬ — один из видов химической связи — связь ионов металла со свободными обобществленными внешними электронами. М. с. обусловливает характерные свойства металлов блеск, пластичность, высокие электро- и теплопроводность, положительный температурный коэффициент электросопротивления, термоэлектронную эмиссию и др. [c.159]


    Удельное сопротивление металлов и сплавов зависит от температуры. Как правило, электросопротивление тем больше, чем вьшхе температу- [c.32]

    Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей. [c.390]

    При высоком значении т.к.с., характерном для металлов, электросопротивление нагревателя изменяется при нагреве и охлаждении в несколько раз следовательно, в несколько раз (в соответствии с формулой Р = Я) изменяется и мощность нагревателя. Это вызывает необходимость дополнительного оборудования для специальной регулировки тока в процессе разогрева [1]. -  [c.8]

    Другие методы (например, методы электросопротивления, поляризационного сопротивления, проникновения водорода сквозь металл) должны использоваться совместно с гравиметрическим. [c.337]

    Физические свойства определяются видом щелочного металла. Электропроводность МСС выше, чем у применяемого для этого синтеза графита, по оси а в 10 раз, по оси с в 200 раз. Температурный коэффициент электросопротивления положительный, т. е. носит металлический характер. Аналогичные изменения наблюдаются у МСС щелочной металл (Аг)-графит. [c.273]

    Методы, позволяющие судить о величине наводороживания по результатам действия водорода на некоторые физико-механические свойства металла (электросопротивление, магнитные свойства, твердость, прочность, пластичность и т. д.). [c.27]

    Более ценны сплавы хрома с никелем (в них часто вводятся как легирующие добавки и другие элементы). Самые распространенные сплавы этой группы — нихромы — содержат до 20% хрома (остальное никель) и применяются для изготовления нагревательных элементов. У нихромов — большое для металлов электросопротивление, при пропускании тока они сильно нагреваются. [c.353]


    Рассматриваемые карбиды и нитриды обладают типичными для переходных металлов электрическими, магнитными и оптическими свойствами. Большинство этих параметров незначительно отличается от соответствующих характеристик переходных металлов. Электрические и магнитные свойства карбидов и нитридов чрезвычайно чувствительны к дефектности структуры, особенно наличию вакансии в металлических и неметаллических позициях. Вероятно, из-за больших концентраций вакансий температурная зависимость элекл-ро- и теплопроводности карбидов и нитридов значительно отличается от соответствующих характеристик переходных металлов. Электросопротивление карбидов и нитридов слабо зависит или вообще не зависит от температуры, и это их свойство широко используется. [c.15]

    Величину электросопротивления образцов определяют перед испытанием и после их кипячения в растворе сернокислой меди и серной кислоты. Нарушение контакта между кристаллитами металла в результате межкристаллитного разрушения при кипячении образцов приводит к увеличению электрического сопротивления стали. [c.345]

    Ограничения в содержании металлических примесей, в первую очередь ванадия и титана, объясняются тем, что они повышают скорость окисления анодов и переходят в алюминий при его плавлении. Загрязнение алюминия этими металлами умень-ша.ет электропроводность. Содержание ванадия в коксе связано с содержанием серы. Пористость коксов определяет повышенную потребность в связующем. Плотность и гранулометрический состав кокса влияют на электросопротивление и окисляемость анода [2-30]. [c.69]

    Упоминавшаяся выше высокая электропроводность металлов уже давно была объяснена присутствием так называемых свободных электронов. Наложение разности электрических потенциалов на концы металлической проволоки вызывает направленное движение электронов, т. е. по металлу идет электрический ток. С ростом температуры увеличивается число столкновений электронов с атомами решетки, поэтому электросопротивление металлов возрастает с температурой и уменьшается [c.163]

    В чистых металлах прирост электросопротивления происходит под влиянием вакансий, межузельных атомов, фаниц зерен, дислокаций. Как показывают результаты исследований, вклад дислокаций очень мал по [c.57]

    Защитные покрытия из эмали или стеклоэмали наносят только в заводских (базовых) условиях, и поэтому их качество, как правило, весьма высокое (табл. 5.12). Эмалевое покрытие обладает большой сплошностью, хорошим сцеплением с металлом и высоким электросопротивлением, но оно достаточно дорого, поэтому его рекомендуется применять только в особо ответственных случаях, например при перекачке агрессивных сред или прокладке трубопроводов в таких средах. 99 [c.99]

    Коррозия металлов под влиянием электрического тока от внешнего источника называется электрокоррозией. В качестве примера рассмотрим электрокоррозию подземного трубопровода но влажной почве. Схема возникновения блуждающего тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показана на рис. У1П.4. Вследствие плохого контакта между рельсами и недостаточной изоляции рельсов от земли часть возвращающегося тока ответвляется во влажную почву, особенно при наличии здесь путей с низким электросопротивлением, таких, как подземные трубопроводы для газа или воды. [c.240]

    Электросопротивление МСС со щелочными металлами при разных температурах [6-18] [c.273]

    Относительное электросопротивление МСС со щелочными металлами при температурах комнатной, жидкого азота и жидкого гелия дано в табл. 6-5. [c.274]

    Обычные формы всех трех элементов характеризуются однотипной слоистой структурой кристаллов (рис. 1Х-53). Каждый атом связан с тремя другими того же слоя [с = 2,5 (Ав ), 3,90 (8Ь), 3,10 А (В1У] и имеет трех ближайших соседей в другом слое = 3,33,(Аз), 3,36 (8Ь), 3,47 А (В )]. Как видно из приведенных цифр, различие ядерных расстояний при переходе по ряду Аз—5Ь—В1 последовательно уменьшается (0,83—0,46—0,37), т. е. происходит некоторое приближение к характерному для типичных металлов равенству ядерных расстояний от каждого данного атома до всех его соседей. Вместе с тем относительная (Не = 1) электропроводность элементов по ряду Аз (2,7) — (2,5) — В1 (0,8) не только не возрастает, но даже уменьшается. Повышение давления влияет на электросопротивление всех трех элементов очень различно (рис. 1Х-54). Сурьма способна образовывать смешанные кристаллы и с Аз,-и с В1, но последние не образуют их друг с другом. В жидком состоянии элементы подгруппы мышьяка смешиваются при любых соотношениях. [c.467]

    В настоящее время в качестве конструкционных материалов почти не применяются чистые металлы, зато широко используются их различные сплавы. Сочетание нескольких металлов или металлов с неметаллами при получении сплавов приводит к появлению ряда ценных свойств, которые отсутствуют у отдельно взятых веществ (твердость, прочность, жароустойчивость, антикоррозий-ность, высокое электросопротивление и др.). [c.187]

    Наличие влаги делает грунт электролитом и вызывает электрохимическую коррозию находящихся в нем металлов. Увеличение влажности грунта облегчает протекание анодного процесса (затрудняя пассивацию металла), уменьшает электросопротивление грунта, но затрудняет протекание катодного процесса при значительном насыщении водой пор грунта (уменьшая аэрируемость грунта и скорость диффузии кислорода). Поэтому зависимость скорости коррозии металлов от влажности грунта имеет вид кривых с максимумом (рис. 277) — при большем избытке воды ско- [c.386]


    Следует отметить, что эти данные имеют некоторую условность. Они были получены на порошкообразном коксе узкого гранулометрического состава, при давлении 36 кГ см и без учета сопротивления на контакте металл—кокс. С увеличением внешнего давления на порошковый кокс происходит сближение его частиц между собой, что приводит к.повышению электропроводности всей массы. При выборе стандартных условий для определения электропроводности кокса были получены следующие данные. После естественного уплотнения порошкового кокса, насыпанного в матрицу прибора, увеличение давления на пуансон от 0,05 до 30—40 кГ1см приводило к снижению удельного электросопротивления в 15—20 раз (рис. 83). Давление 36 кГ смР-было принято за стандартное. Дальнейшее повышение давления давало относительно меньший эффект. При давлениях 200 и 500 кГ1см удельное электросопротивление снижалось в 2 и 3 раза соответственно по сравнению с определенным в стандартных условиях. Такая зависимость согласуется -со степенью уплотнения вещества кокса под давлением, т. е. с объемной плотностью его. [c.210]

    Покрытия обладают высоким электросопротивлением и выдерживают напряжение от 300 до 3200 в не поддаются пайке, сварке не выдерживают ударов хрупки неустойчивы против трения обладают жаростойкостью в пределах 280—300 С пористы облпр ают высокой адсорбционной способностью, вследствие чего являются очень хорошим грунтом под лакокрасочные покрытия. Свойства покрываемого металла (твердость, прочность. магнитная проницаемость) после фосфатировання не изменяются упругость снижается вследствие поглощения металлом водорода в процессе химической обработки [c.932]

    Ферромагнитные вещества. Известны парамагнитные вещества, обладающие постоянной намагниченностью даже в отсутствие внешнего магнитного поля. Подобные вещества называются ферромагнитными. До недавнего времени ассортимент таких веществ был весьма невелик и ограничивался лишь железом, кобальтом, никелем, гадолиние.м, диспрозием, а также сплавами на их основе. В настоящее время к данным металлам добавилась большая группа неметаллических ферромагнетиков с высоким электросопротивлением, применяемых, в частности, в вычислительной технике. [c.302]

    Любое воздействие на металл, приводящее к увеличению в нем дефектов кристаллического строения (нарушения периодичности решетки), при-вод гг к увеличению электрического сопротивления. Наряду с деформацией такими воздействиями являются закалка от высоких температур, облучение частицами высоких энергий. Отжиг деформированного, закаленного или облученного металла приводит к снижению электросопротивления вследствие частичного устранения дефектов решетки. Как правило, при температурах отжига, соответствующих температуре рекристаллизации, электросопротивление становится приблизительно равным исходному. Падение избыточного сопротивления, обусловленного наличием в металле дефектов решетки, начинается уже при низких температурах. Характерно, что падение сопротивления происходит неравномерно, при некоторых температурах оно идет быстрее. Различные стадии возврата электросопротивления соответствуют исчезновению вследствие миграции дефектов различных типов. Измерение кривых возврата электросопротивления является хорошим средством изучения дефеюгов кристаллического строения и их поведения - миграции, аннигшгяции, образования комплексов и скоплений дефектов. [c.58]

    Силициды щелочноземельных металлов имеют суш.ественное практическое значение. Они используются в технологии получения сплавов и при синтезе кремневодородов. Силицид магния MgjSi применяется в технологии магниевых и алюминиевых сплавов. Он обладает высоким электросопротивлением, кубической решеткой и является типичным соединением с ионными связями. [c.12]

    К оптическим методам по своей сущности примыкает метод поверхностной проводимости, который был развит в последние годы в работах X. Шимизу, Дж. Бокриса, В. Андерсена и В. Хансена, Т. Куваны и особенно детально в работах Г. Н. Мансурова, О. А. Петрия и сотр. В этом методе измеряют электрическое сопротивление тонких металлических пленок (толщиной не более 500 А, а обычно 100—200 А), нанесенных на непроводящую основу (стекло, ситал, полимерные пленки и т. п.). Из-за небольшой толщины пленок вклад электронов поверхности в их проводимость оказывается значительным. Молекулы адсорбата вступают в до-норно-акцепторное взаимодействие с электронами поверхности металла, что приводит к изменению электросопротивления пленки. Изменение сопротивления пленки может быть связано также с тем, что молекулы адсорбата образуют на поверхности центры кезеркального рассеивания электронов, так что скорость их перемещения вдоль пленки изменяется. Достоинством метода поверхностной проводимости является то, что он позволяет получить информацию о характере взаимодействия частиц адсорбата с металлом. Его применение для количественного изучения адсорбции основано на экспериментально установленном факте наличия прямой пропорциональности между величиной адсорбции и величиной изменения электрического сопротивления. [c.36]

    Сжатие при комнатной температуре трех оксидов переходных металлов РегОз, СггОз, Т102 до давления порядка более 200 ГПа показало сильное уменьшение их электросопротивления с ростом давления. Для РегОз электросопротивление начинает сильно уменьшаться по мере возрастания давления (на 3 порядка при увеличении давления от атмосферного до - 200 ГПа), и при пороговом давлении, немного большем 200 ГПа, резко падает до очень малого значения здесь происходит, по-видимому, превращение в металлическое состояние. При понижении давления электросопротивление восстанавливает свое прежнее значение. Для СгаОз и Т Ог сильного уменьшения электросопротивления при росте давления вплоть до порогового значения не наблюдается. Переход в металлическое состояние происходит чрезвычайно резким скачком при давлении порядка 280 ГПа у СггОз и при 220 ГПа у И02. Эти переходы также обратимы, как и у Ре20з. [c.162]

    Оксидная пленка весьма тверда, поэтому после анодирования повышается износостойкость металла. Пленка А1гОз имеет высокое электросопротивление. Так, на алюминии высокой чистоты удается получить пленки с удельным электросопротивлением 10 Ом см. Поэтому оксидирование используется для получения изолирующих слоев на алюминиевых лентах, применяемых в конденсаторах. [c.374]

    Выше 550 °С германий станойит ся пластичным я поддается механической обработке. Плавление его сопровождается увеличением плотности (примерно На 5%) И алектропроводности (примерно в 15 раз). В жидком германии каждый его атом имеет 8 ближайших соседей с i (GeGe) = 2,70 А. По мере повышения давления температура плавления германия последовательно снижается и при 180 тыс. ат становится равной 347 °С. Электросопротивление чистого германия с повышением давления возрастает (но при 115 тыс. ат ои приобретает свойства металла). Напротив, у олова и свинца оно уменьшается (рис. Х-74). [c.626]

    Применение марганца, технеция и рения и их соединений. Главная область применения марганца — это черная и цветная металлургия (легирующий металл и раскислитель). Малолегированные марганцовистые качественные стали (до 1,5 мае. долей, %, Мп), применяются как конструкционные, пружинные, рессорные и инструментальные стали. Высоколегированные стали, содержащие до 11—14% марганца, обладают большим сопротивлением ударам и износостойкостью и применяются для трущихся деталей (крестовин и стрелок железных дорог, гусениц тракторов и танков, дробильных машин, шаровых мельниц и т. п.). В цветной металлургии широко используются марганцовистые бронзы, латуни, а также сплавы с магнием и алюминием. Манганины (60% марганца, 30% никеля и 10% меди), обладающие высоким электросопротивлением и малым его температурным коэффициентом, широко применяются для изготовления точных элементов сопротивления в электроизмерительных приборах. [c.387]

    Применение марганца и рения. Марганец в виде ферромарганца применяется для раскисления стали при ее плавке, т. е. для удаления из нее кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12% Мп в сталь, иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает ее твердой и сопротивляющейся износу и ударам. Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин и т. д. В зеркальный чугун вводится до 20% Мп. Сплав 83% Си, 13% Мп и 4% N1 (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр. Марганец вводят в бронзы и латуни. Диоксид марганца используется как катализатор и наряду с другими соединениями (КМПО4 и т. п.) как окислитель. [c.343]

    Концентрацию вакансий можно определять экспериментально различными способами. Наиболее распространенный метод заключается в измерении электросопротивления металла в зависимости от температуры. Вакансии рассеивают электроны и вносят свой вклад в электросопротивление. Его можно выделить экспериментально, так как его зависимость от обратной абсолютной температуры (1/ ) является экспоиенциальной. По этому вкладу можно определить величину Но вакансий. От концентрации вакансий зависит также объем твердого тела. [c.193]

    Металлы обладают высокой электро- и теплопроводностью, положительным температурным коэффициентом электросопротивления, термоэлектронной эмиссией, магнитными свойствами п пластичностью, что обусловлено общн.м свойством — низкой энергией отрыва валентных электронов. Конденсированное состояние металла характеризуется наличием свободных электронов, перемещающихся по всему объему металла. [c.218]

    Для обеспечения непрерывного контроля общей коррозии служит метод, электросопротивления. Увеличение электросопротивления связано с коррозионным разрушением металла потере11 массы. Он применим для газовой, жидкой и газожидкостной сред, которые обладают малой электропроводностью н не имеют резких колебаний температуры. [c.93]

    Зонд позволяет определять в комплексе до извлечения датчика скорость коррозии методом электросопротивления количество диффузионно-подвижного водорода и его параметры по аналогии с датчиком определения диффузионноподвижного водорода и после извлечения датчика скорость коррозии гравиметрическим методом наличие язвенной или питтинговой коррозии и глубины поражения изменение механических свойств вследствие наводороживания содержание водорода в металле. Кроме того, датчик может быть подвергнут металлографическим исследованиям. [c.98]


Смотреть страницы где упоминается термин Металлы электросопротивление: [c.186]    [c.346]    [c.229]    [c.165]    [c.23]    [c.33]    [c.83]    [c.320]    [c.320]    [c.452]    [c.153]    [c.271]    [c.138]    [c.230]   
Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.80 , c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы электросопротивление, изменение

Металлы электросопротивление, температурная зависимость

Удельное электросопротивление металлов

Электросопротивление урана и металлов



© 2024 chem21.info Реклама на сайте