Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы облучение

    Для более полной дегазации металла облучение его ультразвуком следует начинать при температурах, немного больших (на 50° С) температуры плавления, и продолжать до полного затвердевания металла [199]. [c.247]

    В природе иногда встречается каменная соль, окрашенная в синий цвет. Эту окраску мОжно также вызвать искусственно (действием паров натрия или действием катодных лучей или лучей радия с последующим нагреванием). Поэтому считали, что синяя окраска природной каменной соли обусловлена находящимся в коллоидной форме металлическим натрием, который является причиной и искусственного окрашивания. Однако, согласно новейшим исследованиям, природная синяя каменная соль не содержит коллоидно растворенного натрия, ибо изменение, которое вызывается в хлориде щелочного металла облучением ( -лучи, -лучи, рентгеновские лучи), носит другой характер, чем изменение, которое может быть вызвано действием паров металлического натрия. А именно вызванные в обоих случаях окраски, будучи идентичными в видимой части спектра, различны, однако, в ультрафиолетовой части. Окрас- [c.214]


    В связи с тем, что бериллий имеет значение в современной ядерной технике, следует несколько подробнее остановиться на его ядерных свойствах [170, 1155, 1157]. Бериллий имеет только один природный изотоп — Be . Искусственно получено несколько изотопов, из которых наиболее интересен изотоп Ве . Он может образоваться при облучении Ве нейтронами или гамма-лучами. Период полураспада Ве составляет всего 0,61 сек., поэтому он немедленно распадается на два атома гелия —Не в металле, облученном нейтронами (в ядерных реакторах), обнаруживаются включения газа, выделяющиеся при температуре выше 450° С в виде пузырей [170]. При воздействии альфа-частиц (ядер гелия) идет реакция [c.432]

    Судя по численным значениям диссоциации, подвижности и диффузии, мы имеем в кристаллах случаи, аналогичные сжатому газу (кварц при обычных температурах), жидкому электролизу (кварц при высоких температурах) и металлу (облученная каменная соль, сера). [c.228]

    Число мономерных единиц в теломере зависит от условий проведения реакции, из которых главное — соотношение реагентов. В качестве инициаторов используют пероксидные соединения, металлы и карбонилы металлов, облучение УФ- и 7-источниками и т. д. [c.27]

    Мы изучали некоторые стороны реакции (и,у) в органическом кобальтовом комплексе, а также в комплексах других металлов, облученных в твердом состоянии потоком нейтронов. Обозначим процент активности, связанной с первоначальной молекулой, через В, назовем ее активностью задержания. Тогда химически отделимая активность будет составлять 100-7 . [c.169]

    На перенапряжение водорода ири его выделении на металлах железной и платиновой групп влияют ультразвуковые колебания. Водородное перенапряжение изменяется под действием светового облучения и потока радиоактивных частиц. [c.402]

    Указанные недостатки сернистых соединений побуждали исследователей к поискам других промоторов. Но до настоящего времени предложены дополнительно только селенистые и теллуристые соли различных металлов , которые не нашли практического применения. Отмечается также, что применения промоторов можно вообще избежать, если конденсацию фенола с ацетоном проводить в среде минеральной кислоты при облучении ультрафиолетовыми или Р-лу-чами . При этом сохраняются высокая скорость процесса и удовлетворительный выход продукта. [c.67]

    Какое из следующих утверждений относительно фотоэлектрического эффекта неверно а) При облучении светом поверхности металла электроны не выбиваются из него до тех пор, пока частота света не превзойдет некоторого порогового значения, б) Если свет имеет частоту выше пороговой, то чем больше интенсивность света, тем больше скорость выбиваемых фотоэлектронов, в) Если свет имеет частоту выше пороговой, то чем меньше длина волны света, тем больше скорость испускаемых электронов, г) Если свет имеет частоту выше пороговой, то чем больше интенсивность света, тем больше число электронов, испускаемых в единицу времени. [c.379]


    Чтобы фотон, ударяющийся о поверхность металла, мог выбить из него электрон, он должен обладать энергией, превышающей некоторый минимум. Эта минимальная, или пороговая, энергия называется работой выхода электрона из металла. Если падающий фотон имеет большую энергию, ее избыток превращается в кинетическую энергию выбитого фотона. Пороговая длина волны фотоэлектрической эмиссии из Li, выше которой фотоэффект не происходит, равна 5200 А. Вычислите скорость электронов, испускаемых литием при его облучении светом с длиной волны 3600 А. [c.381]

    Полимерные матрицы со сквозными прямыми каналами получают облучением сплошной пленки ионами тяжелых металлов с последующим травлением треков. В СССР трековые мембраны на лавсановой основе изготовляют в виде пленки толщиной 10 5 м с порами размером 10 —ГО м [3, 8]. [c.39]

    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]

    Активирующее действие УФ-лучей на чыс-транс-изомеризацию олефинов (см. гл. 3) побудило Азингера исследовать влияние облучения и на структурную изомеризацию под действием карбонилов металлов [43]. Оказалось, что при комнатной температуре без облучения изомеризация отсутствует, а если применять УФ-облу-чение, то в зависимости от мощности излучения за 5 ч степень превращения может достигать 25—90%. Имеются и другие работы [1, 44], Б которых убедительно подтверждено активирование изомеризации олефинов УФ-лучами. [c.107]

    Облучение интенсифицирует работу коррозионных микроэлементов, что имеет практическое значение для контактной коррозии металлов. [c.371]

    Влияние облучения на коррозию металлов в электролитах довольно разнообразно, поэтому о характере этого влияния нет единого мнения. Часть исследователей считает, что облучение усиливает коррозию алюминия и его сплав в агрессивных по отношению к окислам алюминия средах, в том числе и в горячей воде (рис. 261), другие исследователи утверждают, что под воздействием облучения коррозия значительно не усиливается, а иногда даже затормаживается. [c.371]

    Чем равномернее распределяются тепловые потоки по длине окружности трубы, тем выше может быть средняя теплонапряженность труб. Так, для печей с двухсторонним облучением однорядных печных труб допускаемая теплонапряженность поверхности нагрева более высокая 50 ООО Вт/м ), чем для печей с наклонным сводом (теплонапряженность радиантных труб не более 35 000 Вт/м ). Чем более термостойки сырье и металл труб, тем меньше вязкость сырья и выше скорость его движения в трубах, тем большую теплонапряженность можно допустить. [c.128]

    Чтобы электроны могли покинуть металл, они должны обладать запасом энергии для преодоления электростатического притяжения ионов. Прочность связи электрона в данном металле характеризуется величиной работы выхода электрона, т. е. количеством энергии, которое необходимо для выделения электрона из металла. Только в случае придания электронам дополнительной энергии (нагрев, облучение ультрафиолетовыми лучами и др.) можно создать условия для выхода электронов из поверхностного слоя металла. В обычных условиях выход электронов из металла невозможен. Металлическая связь бывает весьма прочной металлам свойственна высокая твердость, высо кая температура плавления и пр. [c.10]

    При жестком облучении нейтронами или другими высокоэнергетическими частицами кристаллическая решетка металла претерпевает изменения, напоминающие те, что происходят при глубокой холодной деформации. Появляются вакансии в решетке, межузельные атомы, дислокации это увеличивает скорость диффузии специфических примесей или легирующих компонентов. В процессе облучения может происходить локальное повышение температуры — так называемый температурный пик . Существуют два типа пиков термические, при которых практически все атомы остаются на своих местах в решетке, и пики смещения, когда множество атомов перемещается в междоузельные положения. [c.154]


    Способность экситона передвигаться лучше всего продемонстрирована в работе Апкера и Тафта [17]. Эти авторы показали, что экситоны, образованные в ряде галогенидов щелочных металлов облучением, могут захватывать электроны из Р-центров на расстоянии порядка 1000 периодов решетки. В конечном счете энергия экситонов может рассеиваться в виде света, вызывать образование фононов и переходить в энергию других типов дефектов решетки. [c.173]

    В природе иногда встречается каменная соль, окрашенная в синий цвет. Эту окраску можно также вызвать искусственно (действием наров натрия или действием катодных лучей или лучей радия с последующим нагреванием). Поэтому считали, что синяя окраска природной каменной соли обусловлена находящимся в коллоидной форме металлическим натрием, который является причиной и искусственного окрашивания. Однако, согласно новейшим исследованиям, природная синяя каменная соль не содержит коллоидно растворенного натрия, ибо изменение, которое вызывается в хлориде щелочного металла облучением ( -лучи, 7-лучи, рентгеновские лучи), носит другой характер, чем изменение, которое может быть вызвано действием паров металлического натрия. А именно вызванные в обоих случаях окраски, будучи идентичными в видимой части спектра, различны в ультрафиолетовой части. Окраска, вызванная облучением (а также окраска природной синей каменной соли), обусловлена наличием в кристаллической решетке свободных электронов. Они расположены в определенных свободных (вследствие нарушений порядка ) (ср. т. II, гл. 1) местах решетки, образуемой ионами галогена (Seitz F., Rev. mod. Physi s, 18, 384, 1946). [c.193]

    Указанные типы печей с экранами двустороннего облучения разработаны как типовые. Эти печи особенно подходят для таких процессов, как термический крекинг, пиролиз, коксование, дегрщри-ровапие, где высокие температуры нагрева доллшел сочетаться со сравнительно небольшим временем пребывания продукта в трубах печи, т. е. с коротким змеевиком. Кроме того, эти печи значительно дешевле печей старых типов, поскольку для передачи того и е количества тепла требуется меньший вес металла труб, каркаса и т. д. [c.98]

    В 1886—1887 гг. Герц, пропуская электрическую искру через воздушный зазор между двумя электродами (так называемый искровой промежуток), обнаружил, что при облучении катода ультрафиолетовым светом искра возникала легче. Это и другие подобные явления, наблюдаемые при освещении металлов светом, как было установлено впоследствии, обусловлены фотоэМктрическим эффектом .  [c.150]

    Люминисцентная дефектоскопия. Этот метод основан на введении в полость дефектов люминисцирующих веществ с последующим облучением поверхности исследуемой детали ультрафиолетовыми лучами. Под действием ультрафиолетовых лучей дефекты вследствие люминисценции введенных веществ становятся видимыми. Контроль с помощью люминисцентной дефектоскопии делится на следующие этапы 1) очищение исследуемой поверхности металла от загрязнений 2) нанесение проникающего люминис-центного состава 3) нанесение проявляющего порошка 4) осмотр детали в ультрафиолетовых лучах. Для контроля деталей методом люминисцентной дефектоскопии рекомендуются аппараты люми-нисцентный дефектоскоп ЛД-4, переносные ртутно-кварцевые приборы типа ЛЮМ-1, ЛЮМ-2 или настольные ультрафиолетовые осветители типа УФ-6. [c.204]

    Если неочищенный крекинг-бензин, особенно старый, полученный при термическом крекинге, оставить на продолжительное время в контакте с воздухом и металлами, он будет медленно окисляться. Во многих случаях происходит отстой фазы, которая отличается от почти бесцветной подвижной жидкости крекинг-бензина. Это коричневатая, полуподвижпая смола. Облучение [c.73]

    В большинстве случаев галоидирование ускоряется под действием светового облучения (длина волны 3000—5000 А) или высокой температуры (в присутствии катализатора или без него). В качестве катализаторов обычно применяют галоидные соединения металлов, имеющих два валентных состояния, способные отдавать атомы галоидов при переходе из одного валентного состояния в другое, — P I5, P I3, Fe lg. Используют также хлористую сурьму или хлористый марганец, а также неметаллические катализаторы — иод, бром или фосфор. [c.259]

    Элекгрои — элементарная частица, обладаюн.1ая наименьшим существующим в природе отрицательным электрическим. зарядом (1,602- И)- Кл). Масса электрона равна 9,1095- 1Q-2 г, т. е. почти в 2000 раз меньше массы атома водорода. Было установлено, что электроны могут быть выделены из любого элемента так, они служат переносчиками тока в металлах, обнаруживаются в пламени, испускаются многими веществами ири нагревании, освещении или рентгеновском облучении. Отсюда следует, что электроны содержатся в атомах всех элементов. Ио электроны заряжены отрицательно, а атомы не обладают электрическим зарядом, они электро-нейтральны. Следовательно, в атомах, кроме электронов, должны содержаться какие-то другие, полол<ительно заряженные частицы. i Иначе говоря, атомы представляют собой сложные образобания, построенные из более мелких структурных единиц.  [c.57]

    При облучении гексакарбонилов металлов в системе метиленхло-рид/ТГФ в присутствии краун-эфира и гидроксида калия или фторида калия в течение 2 ч ртутной кварцевой лампой вы- [c.286]

    Структурлую и г ис-гранс-изомеризацию олефинов активируют карбонилы металлов. На скорость процесса влияют-природа и концентрация карбонила и растворителя, структура олефина, реакционная среда, облучение реакционного сосуда УФ-лучами и у-квантами. [c.106]

    НОЙ атмосфере и в присутствии следов кислорода и паров воды без растворителя и с-неполярным (бензол) и полярным (изопропиловый спирт) растворителями. Изучено также активирование изомеризации УФ-лучами и у-квантами. Некоторые результаты приведены табл. 29. Видно, что наибольшую каталитическую активность проявляют наименее стабильные карбонилы металлов VII и VIII групп (Ке, Со, Ре), в то время как стабильные к облучению карбонилы металлов VI группы не активны. Наибольшей активностью обладает карбонил рения, но попытки активировать его УФ-лучами и у-квантами оказались безуспешными, так как разложение карбонила протекало быстрее, чем активирование им изомеризации. Это же характерно и для другого двуядерного карбонила — Со2(СО)8. Что касается карбонила железа, то он наиболее чувствителен к активированию и поэтому особенно удобен для исследовательских целей. [c.108]

    Из последнего пункта следует, что могут существовать безопасные (неразвивающиеся) трещины, переходящие в опасные (развивающиеся) при соответствующем изменении внутренних (старение металла, его наводорожи-вание, охрупчивание при облучении) и внешних (рост, переменность и динамичность нагрузки, охлаждение) условий. [c.182]

    Оба эти металла применяются в атомных реакторах. Цирконий отличается высоким сопротивлением коррозии и действию нейтронов и не подвергается изменениям во время облучения. Поэтому цирконий применяется для защиты топлива в атомных реакторах и накладывается в виде рубашки на пруты металлического урана, которые вводятся внутрь реактора. Совершенно противоположные свойства у гафния, который хороига абсорбирует нейтроны и поэтому является хорошим замедлителем. Так как оба металла, как правило, в природе встречаются вместе, то их приходится разделять. При этом возникают затруднения, связанные с большим сходством этих металлов по свойствам. Разделение их обычными химическими методами практически невозможно. Промышленное решение этого вопроса основывается на физических процессах, главным образом на экстракции органическими жидкостями из водных солянокислых или азотнокислых растворов [468, 471, 485]. [c.445]

    Особо следует отметить ряд попыток перевода летучих комплексов металлов в нелетучие [192]. Так, при добавлении к дистилляту, содержащему ванадий в виде порфиринового комплекса, небольшого количества пиридина образуется нелетучий пиридинва-надиевый комплекс. После разгонки продукта дистиллят существенно очищается от ванадия. Весьма интересные результаты приведены в работе [329] по изучению облучения газойля дозой У-Ю Р. Анализ показал, что количество летучих соединений ванадия и никеля заметно снизилось, вероятно, вследствие того, что металл-порфириновые комплексы неустойчивы к облучению. Этот факт может быть использован для перевода летучих соединений никеля и ванадия в нелетучие формы. [c.207]

    Сырье для каталитического крекинга пробовали окислять при повыщенных температурах кислородом или озоном с последующим отделением продуктов окисления промывкой водой (соединения тяжелых металлов переходили в водорастворимую форму). Весьма интересны попытки перевести-летучие металлпорфирино-вые комплексы (ванадия и никеля) в нелетучие соединения путем обработки продукта небольщим количеством пиридина (образуется нелетучий пиридинванадиевый комплекс) или облучения газойля (доза излучения 7ЛОР Р) при облучении в продукте значительно снижается количество летучих производных ванадия и никеля [18]. [c.36]

    Практика эксплуатации печей пиролиза показывает, что отдельные трубы выходят из строя довольно часто. Кроме местных перегревов стенки, вызываемых неравномерным облучением, закоксовыванием труб с последующим выжигом кокса, значительное влияние оказывают на длительность работы стали Х23Н18 и ее специфические особенности. Так, при работе труб змеевика в области температур 650— 800° С происходит образование сигма-фазы, вызывающей охрупчивание стали и снижение ее жаропрочности. Выпадения сигма-фазы не происходит, если металл нагрет вьпие 800° С. Поэтому при конструировании змеевиков печи пиролиза нижние ряды труб, работающие при температурах стенки до 850° С, целесообразно выполнять из стали Х18Н10Т. Трубы из этой стали хорошо сопротивляются эрозии. Поэтому и рекомендуется применять их также на выходных участках змеевиков печи. Указанная особенность стали Х23Н18 делает необходимым расположение приварных калачей змеевика непосредственно в топке без выноса их в специальную камеру. В случае размещения калачей змеевика вне топки, кроме возможности охрупчивания стали, имеет место также усиление отложений кокса на более холодных поверхностях. [c.45]

    О воздействии радиации на коррозионное поведение металлов известно мало. Влияние облучения на коррозионные свойства можно сравнить с действием холодной деформации, с той разницей, что при облучении в коррозионной среде образуются локальные пики смещения и химические вещества (например, HNOз или Н2О2), влияние которых на коррозию вторично. Это значит, что стойкость тех металлов, скорость коррозии которых лимитируется диффузией кислорода, практически не изменится после облучения. В кислотах скорость коррозии облученной стали (но не чистого железа) повысится, а стойкость облученного никеля останется прежней, так как он менее чувствителен к механической обработке. [c.154]

    Коэффициент теплопроводности данного материала зависит от многих факторов. Небольшое количество примесей в чистом металле приводит к значительным иотерям теплопроводности. Облучение быстрыми нейтронами может вдвое и даже больше уменьшить теплопроводность металлов или керамических материалов. Как видно из рис. З.Ь температура существенно влияет на коэффициент теплопроводности. Давление оказывает слабое влияние на теплопроводность газа, содержащегося в пористых материалах, до тех пор, пока межзерен-иые промежутки не станут меньше среднего пути свободного пробега молекул газа. Как показано на рис. 3.2, влияние давления становится существенным при давлениях ниже примерно 10 мм рт. ст. 6]. При низких температурах, когда тепловые потоки излучения малы, молено обеспечить надежную теплоизоляцию путем откачивания газа из пространства между двумя полированными поверхностями до давления 0,01 мм рт. ап. или менее. Еще лучшие термоизоляционные свойства можно получить, заполнив вакуумированный промежуток между поверх юстями отражающим изоляционным мате ) налом. Исключительно хорошими теплоизоляционными свойствами обладает многослойная теплоизоляция, применяемая для криогенного оборудования. Она состоит из нескольких тысяч перемежающихся слоев алюминиевой фольги и пластиковой пленки или стеклянной ткани толщиной в сотые доли миллиметра. Откачивая пространство между слоями, можно получить коэффициент теплопроводности при криогенных температурах до 1,73-10" вт1 м-град). [c.40]

    Принципы подбора и применения присадок, а также эффективность их действ ия в маслах во многом зависят от состава самой присадки, степени ее чистоты (отсутствия примесей) химического состава масла, прежде всего от наличия в нем полярных компонентов (смолистых веществ, серо-, азот- и кислородсодер-жаидих продуктов) наличия в маслах присадок другого функционального действ ия, что может привести к синергизму (усилению) или антагонизму (ослаблению) действия добавки концентрации вводимой присадки (как правило, с повышением температуры выкипания масла требуется большее количество присадки) условий применения смазочного материала (тем пературы, удельных нагрузок, скорости и контакта с различными металлами и средами и прежде всего с влагой, воздейств ия облучения, вакуума и т. п.) имеет значение и стоимость присадок, которая обычно в 10—20 раз выше стоимости базовых масел. [c.311]


Смотреть страницы где упоминается термин Металлы облучение: [c.410]    [c.216]    [c.559]    [c.17]    [c.371]    [c.20]    [c.377]    [c.492]    [c.420]    [c.116]    [c.526]    [c.120]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

облучение



© 2025 chem21.info Реклама на сайте