Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники донорная

    В идеальном кристалле полупроводника (в отсутствие примесей) уровень Ферми расположен примерно посредине между зонами валентной и проводимости (уровень е,, на рис. 112, а). При наличии донорной примеси (имеющей лишние электроны) уровень Ферми по- [c.454]

    Фосфор, мышьяк или сурьма (имеющие электронное строение внешнего энергетического уровня s pЗ и проявляющие валентность 5), будучи введенными в кристаллические решетки германия или олова (электронное строение внешнего уровня 5 р валентность 4) ведут себя как донорные примеси, т. е. отдают электроны и создают проводимость п-типа. Если же в германий или кремний ввести бор, алюминий, галлий или индий (электронное строение внешнего уровня 5 р, валентность 3), то атомы примеси захватывают четвертый электрон и полупроводник обнаруживает проводимость р-типа. [c.186]


    Известно, что отрицательные (Л"), нейтральные (Л ) и положительные центры (т]" )— дырки находятся в равновесии и доля каждой формы определяется уровнем Ферми Уровень Ферми повышается при наличии донорных примесей и понижается в присутствии акцепторных. Имеются данные, что сульфидные катализаторы, в частности WSj, представляют собой п-полупроводники, в которых есть избыточная нестехиометрическая сера — акцепторная примесь Вполне возможно, что сера может играть аналогичную роль и в других сульфидных катализаторах. [c.127]

    Число и природа носителей т(жа в полупроводниках в большей степени зависят от их чистоты и характера примесей. Примеси принято делить на донорные и акцепторные, т, е. на отдающие и присоединяющие электроны. Донорные примеси увеличивают число электронов, а акцепторные — число дырок. Этот эффект примесей можно пояснить на примере германия, у которого имеется четыре валентных электрона. Если атом германия в его решетке заменить пятивалентным атомом мышьяка, то один электрон окажется лишним. Для его участия в проводимости необходимо, чтобы энергетический уровень атома примеси был расположен в запрещенной зоне вблизи зоны проводимости (непосредственно у ее нижнего края). Тогда каждый атом примеси будет ионизирован и электроны перейдут в зону проводимости. Число отрицательных носителей тока в полупроводнике с донорной примесью больше, чем число положительных носителей тем ие менее уравнение (5.45) остается справедливым, подобно тому как ионное произведение воды не изменяется при добавлении щелочи. Предположим, что один атом донорной примеси приходится ьа 10 атомов полупроводника. Считая все атомы примеси (иaпp iмep, мышьяка) полностью ионизированными, найдем, что в 1 см германия находится 4,5-10 при- [c.138]

    Если в кристалле имеются донорные или акцепторные примеси (иапример, изоморфно замещающие ионы в узлах кристаллической решетки), то в объеме и на поверхности полупроводника появляются избыточные электроны в зоне проводимости или избыточные дырки в валентной зоне и соответствующие локальные уровни энергии внутри запрещенной зоны. В зонной теории относительное количество электронов и дырок в полупроводнике характеризуется так называемым уровнем энергии Ферми (или просто уровнем Ферми), который имеет смысл химического потенциала электрона в полупроводнике. [c.454]

    Роль активных центров играют нри этом электроны в зоне проводимости. В соответствии с опытом реакция ускоряется при наличии в полупроводнике электронно-донорных примесей. [c.457]

    Часто, но не всегда, этому случаю отвечает хемосорбция на анионной подрешетке полупроводника. Донорная связь также может быть ионной или гомеополярной в зависимости от природы взаимодействующих веществ. К ней относится все сказанное ранее относительно различия свойств такой связи в изолированной молекуле СК и связи молекулы С с решеткой Ь. [c.143]


    Одновременное введение в кристалл полупроводника донорных и акцепторных примесей не может привести к увеличению концентрации носителей обоих знаков. Если предположить, что концентрации и энергии активации донорных и акцепторных примесей имеют одинаковые значения, то концентрации свободных электронов и дырок также должны совпадать между собой. С другой стороны, произведение этих концентраций при данной температуре— величина постоянная [см. формулу (71) 1. Поэтому концентрации носителей в рассматриваемом полупроводнике имеют такие же значения, как и в кристалле без примесей, [c.128]

    Положение [Хц при низких температурах определяется примесями, введенными в полупроводник донорные (п ) примеси повышают 1 0) акцепторные (р ) понижают (см. гл. V). Изгиб зон на поверхности полупроводника А л определяется заряжением, ее при адсорбции, а также неадсорбционными состояниями (см. выше). [c.473]

    Детекторы кремниевые диффузионные (ДКД). р—и-Переход в таких детекторах получают методом диффузии в тонкий поверхностный слой р- или -полупроводника донорных или акцепторных атомов. В большинстве случаев исходный материал / -кремний, а донор— фосфор. Толщина чувствительного слоя такого же порядка, что и у ПБД, отсюда и близость их основных параметров и области применения. Они также работают без охлаждения. [c.88]

    Добавки (примеси) могут быть подразделены на электронодонор-ные и электроноакцепторные. Примером донорной примеси могут служить атомы мышьяка, введенные в германий. Они снабжают зону проводимости подвижными электронами, при наложении внешнего электрического поля выполняют функцию носителей тока, электрическая проводимость их электронная (отрицательная), полупроводник относится к п-типу. Ширина запрещенной зоны благодаря введению донорной примеси резко уменьшается. [c.140]

    На рис. 16 показаны электронные энергетические состояния в полупроводниках донорного, акцепторного или частично компенсированного типов. Нас сейчас интересует только область энергий между потолком валентной [c.224]

    Другими словами, адсорбированный водород создает на поверхности данных полупроводников донорные центры, которые снабжают зону проводимости электронами, увеличивая количество носителей тока. [c.140]

    Рассмотрим кратко влияние свойств полупроводника и электромагнитного излучения на перечисленные характеристики фотоэлектрохимического преобразователя энергии (см. также [49]). Связь между К,нг и шириной запрещенной зоны обсуждалась выше. Величина квантового выхода фототока, как следует из уравнения (2.2), определяется соотношением между коэффициентом оптического поглощения света а, толщиной обедненного слоя и диффузионной длиной неосновных носителей Первая из перечисленных величин зависит от типа оптических переходов в полупроводнике, вторая-от концентрации основных носителей [см. уравнения (1.16) и (1.17)], которая регулируется введенными в полупроводник донорными или акцепторными примесями, третья-от совершенства кристаллической структуры материала и концентрации в нем случайных примесей и дефектов, служащих центрами рекомбинации. [c.57]

    Особенности распределения электронного заряда в молекулах адсорбата и на поверхности адсорбента (пониженная или повышенная электронная плотность) проявляются при адсорбции на полупроводниках. В этих случаях проявляются специфические взаимодействия донорно-акцепторного типа, по своей природе близкие к рассмотренным выше специфическим взаимодействиям на гидроксилированных и ионных поверхностях. Часто эти взаимодействия переходят в еще более специфические и сильные с образованием поверхностных хемосорбционных комплексов. [c.500]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    При подготовке 4-го издания книга не подверглась значительному изменению. В некоторой степени переработано изложение материала, относящегося к природе химической связи в молекулах и кристаллах, рассмотрена донорно-акцепторная связь. Дополнен материал, относящийся к свойствам твердых тел, введены представления о зонной теории металлов и полупроводников. Расширено изложение особенностей свойств газов, кристаллов при очень высоких температурах. Рассмотрены некоторые процессы при очень низких температурах (сверхпроводимость и др.). Расширен материал, посвященный внутреннему строению и свойствам воды в различных состояниях и процессам замерзания ее введено представление о релаксационном характере процессов, связанных с достижением равновесного состояния воды при изменившихся внешних условиях [c.12]


    Электронная теория предсказывает два вида взаимосвязи между изменением электропроводности полупроводника и изменением его каталитической активности. При акцепторной реакции на п-полу-проводнике (или донорной реакции на р-полупроводнике) связь между проводимостью полупроводника и его каталитической активностью должна быть прямая. При донорной реакции на п-полупроводнике (или акцепторной реакции на р-полупроводнике) эта связь обратная. [c.457]

    Граница электронно-дырочного перехода р—и-переход) создается путем введения в кристалл полупроводника методом термической диффузии донорной или акцепторной примеси. [c.9]

    Электрические свойства большинства полупроводящих веществ объясняются тем, что число электронов в кристаллической решетке не равно числу дырок. Такое состояние достигается введением примесей легированием). Примесь, атомы которой в кристаллической решетке основного вещества отдают электроны, называется донорной. У полупроводников с донор-ными примесями пЗ>р, и они относятся к полупроводникам п-типа, т. е. с электронной проводимостью. Примесь, атомы которой захватывают электроны от атомов основного вещества, называется акцепторной. У полупроводников с акцепторными примесями р п, и они являются полупроводниками р-типа с дырочной проводимостью. Характер проводимости, достигаемый легированием, можно предсказать сравнением обычных валентных состояний атомов примеси и основного вещества. Если валентность атомов примеси выше валентности основного вещества, то атомы примеси отдают электроны, л>р и примесь донор-ная. Если же валентность атомов примеси ниже, то ее атомы захватывают электроны, р >п и примесь акцепторная. Легирование всегда повышает проводимость полупроводника. [c.186]

    Приведите примеры полупроводников с дефектами, обусловленными наличием донорных примесей. Объясните механизм влияния примесей на электрическую проводимость. [c.381]

    Важное значение имеет химическое соединение кремния и углерода — Si (карборунд). Ширина запрещенной зоны 2,86 эв. Поэтому этот полупроводник может быть использован в условиях высоких температур при 500—700° свойства его улучшаются. Отличается уникальным сочетанием механических, термических и химических свойств. При введении примесей элементов V группы (Р, As, Sb, Bi) проявляет электронную проводимость, а примеси элементов II и III групп (Mg, Са, -В, А1, Ga, Jn) сообщают карборунду дырочную проводимость. Донорные примеси сообщают полупроводнику зеленоватый цвет, а акцепторные — сине-черный. [c.458]

    Наряду с собственными большое распространение получили также полупроводники примесного типа. В них основное число переносчиков тока — электронов или дырок — поставляют введенные в собственный полупроводник специальные примеси, энергетические уровни которых располагаются между валентными зонами и зонами проводимости полупроводника. Так, при введении в кристалл германия так называемых донорных примесей, как, например, фосфора, мышьяка, сурьмы, электроны последних переходят в зону проводимости полупроводника, резко увеличивая в ней число электронов — переносчиков тока (п-про-водимость). При добавлении к германию акцепторных примесей типа бора, алюминия, индия электроны валентной зоны полупроводника переходят на свободные уровни зоны примесей, что увеличивает число дырок (р-проводимость) в валентной зоне. [c.77]

    Выше ука. 41.шалось, что. элементы III и V групп периодической системы оказывают противоположные влияния ый свойства полупроводников. Одновременное присутствие в полупроводнике донорных и акцепторных микроиримесей вызывает соответствующую компенсацию, так кяк акцепторные микропримеси захватывают электроны донорных микропримесей. В случае преобладания микроиримесей одного вида полупроводник будет обладать типом проводимости, присущим этому виду. При раа- [c.22]

    Рассмотрим природу р—/г-перехода. При легировании полупроводника донорными и акцепторными примесями образуются области с электронной и дырочной проводимостью. Например, при введении в кристалл фосфида галлия примеси серы, замещающей фосфор, образуются донорные уровни, поско.1)ьку у серы на один валентный электрон больше, чем у фосфора. Когда вводится примесь цинка, замещающего галлий, то образуется акцепторный уровош., так как у цинка на один валентный электрон меньше, чем у галлия. Вносимые этими примесями избыточные электроны или дырки (недостающие электроны) при комнатной температуре являются свободными, т. е. переходят с примесных уровней в зону проводимости (электроны) или валентную зону (дырки). Стремление носителей тока к равномерному распределению по кристаллу приводит к тому, что часть электронов переходит на ближайшие акцепторы это обедняет электронами /г-область и дырками р-область. На границе раздела возникает отрицательный заряд со стороны р-области и положительный — со стороны -области (рис. VI. 15). Эти заряды создают поле, препятствующее дальнейшему движению электронов пз п- в р-область. Собственно р—/г-переход находится в том месте обедненного слоя, где уровень Ферми пересекает середину запрещенной зоны. [c.143]

    Легирование электронного полупроводника акцепторной примесью илй р-полупроводника донорной примесью приводит к перераспределению сюбодных носителей заряда между уровнями (ком- [c.24]

    Сказанное означает, что при одновременном введении донорных и акцепторных примесей происходит взаимная компенсация и их ионизация резко уменьшается. Таким образом, одни и тот же тип электропроводности и концентрация носителей могут быть получены как прн малом содержании примеси одного сорта, так и при большом содержании двух частично компенсируюш,их друг друга примесей. Следует однако отметить, что несмотря на одинаковый тип электропроводности и концентрацию носителей суш,ествуют заметные различия во многих других свойствах компенсированных и некомпенсированных полупроводников. В качестве примера укажем, что подвижность носителей заряда в компенсированных полупроводниках ниже, а скорость рекомбинации выше, чем в некомпенсированных. [c.129]

    Эти хемосорбционные связи в большей или меньшей степени поля-ризовзны, и тот факт, что водород образует положительные, а этилен — отрицательные адсорбционные слои на N1 , можно было бы истолковать как указание на существование адсорбции акцепторного или донорного типа [14], как на полупроводниках но в этом случае ввиду высокой плотности электронов и дырок эффекты, связанные с потенциальным барьером, гораздо слабее. [c.33]

    Добавляя к кристаллу определенные примесные атомы, можно получить полупроводник, в котором электроперенос осуществляется за счет только электронов (л-тип) или только дырок (р-тип). Если к кристаллу кремния добавить атомы элементов V группы периодической системы, то можно получить проводимость -типа. Дримеси, увеличивающие число свободных электронов в полупроводнике, именуются донорными. Если в кристалл кремния ввести примесные атомы элементов П1 группы, то будет иметь место проводимость р-типа. Такие примеси называются акцепторными. [c.9]

    В отличие от обычных (нерадиационных) каталитических процессов донорно-акцепторного типа наибольший радиационно-каталитический эффект должен быть при использовании диэлектриков и плохих полупроводников (силикагель, А1гОз, MgO, ZnO и т.п.). При воздействии нейтронов и тяжелых заряженных частиц эффект может быть больше, чем при обработке V-лучами или быстрыми электронами. С ростом температуры облучения и реакции влияние облучения на каталитическую активность уменьшается. Большое значение имеют доза облучения и энергия излучения. [c.195]

    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Повышенная электрическая проводимость органических полупроводников объясняется высокой подвижностью я-электро-нов сопряженных двойных связей. Это обусловливает эстафетную электронно-дырочную проводимость при состоянии, когда электроны находятся в них на более высоких энергетических уровнях. В результате взаимодействия с поверхностью, ограничивающей объем, электрон мол<ет оторваться от молекулы л попасть на поверхность. При этом в молекуле возникает вакансия— дырка. Эффективная масса электронов и дырок много меньше массы молекулы, так что у соседней молекулы, которая не успевает заметно сместиться, один из электронов. может перескочить в образовавшуюся дырку. Одновременно мигрируют как положительные, так и отрицательные заряды. Электрическая проводимость по эстафетному механизму возникает за счет электронных донорно-акцеиторных взаимодействий между молекулами и на границе масляной фазы с поверхностью металла. В отличие от ионной или форетической проводимости при эстафетной электрической проводимости не происходит переноса вещества, а значит, последняя не долл<на зависеть от вязкости среды. [c.61]

    При термодинамическом равновесии в системе должны быть справедливы не только формулы (98) и (99), но и формулы (69) и (71). Иными словами, при изменении концентрации носителей за счет введения донорных или акцепторных примесей произве-денне концентрации дырок и концентрации свободных электронов при заданной температуре остается постоянным. Это означает, что увеличение концентрации носителей одного знака влечет за собой уменьшение в концентрации носителей противоположного знака. Те носители, концентрация которых больше, называются основными и определяют величину электропроводности данного кристалла. В соответствии с этим говорят о полупроводниках с электронной или дырочной электропроводностью [п- или р-тип). [c.128]

    Добавление к селениду мышьяка галлия и бора, образующих донорно-акцепторные связи, приводит к тому, что в его каркасную структуру включаются тетраэдрические структурные единицы, сквозная проводимость при этом повышается. Примесь от 10 до 1 ат. % меди к сульфиду мышьяка повышает электропроводность от 10 5 до Ом- -см2. Но в ряде случаев примесь 1—3 ат.% элементов II—III групп не влияет на электропроводность халькогенидных стекол, чем они резко отличаются от полупроводников, свойства которьй резко изменяются примесями. По-видимому, это связано с тем, что атомы примесей оказываются захваченными молекулярными включениями, обособленными от проводящего каркаса халькогенидного стекла. [c.120]

    Однако реальные полупроводники всегда имеют примеси, которые существенно влияют на характер электрической проводимости, в этом случае называемой примесной. Примеси бывают донорные и акцепторные. Донорные примеси имеют на валентной электронной оболочке большее число электронов, чем их число на валентной электронной оболочке атома основного элемента полупроводника. Например, примеси атомов элементов V или VI главных подгрупп периодической системы в кристаллической решетке кремния (IV главная подгруппа) будут донорными. В зонной структуре полупроводника появляются дополнительные электроны проводимости. Если атом примеси содержит меньше валентных электронов, чем атом основного элемента, то полупроводник содержит в валентной зоне дополнительные свободные МО, на которые могут переходить валентные электроны. Такие примеси называются акцепторными, они приводят к появлению дополнительных дырок проводимости. По отношению к кремнию такими примесями будут элементы III главной подгруппы. Полупроводники с преобладающим содержанием донорных примесей называются полупроводниками с электронной проводимостью или п-типа. Если же преобладают примеси акцепторные, то полупроводники называются полупроводниками с дырочной проводимостью или р-типа. Для получения примесных полупроводников полупроводники, полученные специальными кристаллофизическими методами в сверхчистом состоянии, легируются элементами акцепторами или донорами электронов в микродозах, не превышающих 10 %. Примеси резко изменяют собственную электрическую проводимость полупроводников, поскольку количество носителей заряда, поставляемых ими обычно больше, чем их число в чистом полу-прово,цнике. Так, чистый кремний имеет удельное электрическое сопротивление электронной проводимости около 150-10 Ом-м, дырочной проводимости в.4 раза, электронной проводимости после легирования фосфором и дырочной проводимости после легирования бором — в 20 раз меньше. [c.636]

    В действительности, как правило, при прочной (двухэлектронной) связи не образуются ни чисто гомеополярные, ни чисто ионные связи. Одноэлектронно (слабо) связанные атомы или радикалы обладают свободной валентностью и реакционноспособны , что и является причиной каталитического ускорения реакций. Двухэлектронные связи приводят к образованию прочных поверхностных соединений, не обладающих реакционной способностью и могущих являться причиной хемосорб-ционного отравления поверхности. В зависимости от типа полупроводника (и или р) адсорбция будет сопровождаться связью донорного или акцепторного типа, что и определяет селективность действия катализаторов полупроводникового типа. [c.302]

    В соответствии с этгхми представлениями в случаях акцепторной реакции на п-полупроводнике или донорной на р-полу-проводнике каталитическая активность с электрической проводимостью растет. Напротив, в случаях донорных реакций на п-полупроводнике или акцепторных на р-полупроводнике каталитическая активность с ростом электрической проводимости [c.302]

    Воду рассматривают и как аморфный полупроводник, поскольку она является диэлектрической средой, в которой движутся и взаимодействуют заряженные частицы Н3О+ и ОН- по аналогии с электронными полупроводниками. Полупроводниковые свойства воды особенно заметно проявляются в ее тонких слоях, взаимодействующих с сильно ориентированной подложкой, донорные свойства усиливаются в граничных слоях. Показано, что твердение цементной дисперсной системы возможно, если водо-цементное отношение В/Ц меньше некоторого критического значения а (стесненное состояние). Следовательно, граничные слои воды приобретают новые, в том числе и структурно-механические свойства (квазитвердость), если В/Ц оказывается ниже значения, при котором происходит перекрытие граничных слоев. Поэтому стесненное состояние отвечает перекрытию граничных водных слоев, адсорбированных на соседних твердых частицах, и самая ранняя прочность в определенной степени связана со структурно-механическими свойствами водных пленок на поверхности твердой фазы. [c.84]

    Таким образом, электрическая проводимость полупроводника, содержащего донорную примесь, будет электронной (отрицательной). Такие полупроводники относят к /г-типу, илн к негативным (от лат. negativus — отрицательный). [c.457]

    Для оценки влияния примесных атомов на электропроводность полупроводника необходимо определить изменение полной потенциальной энергин системы при переходе одного электрона с примесного уровня в зону проводимости. Эта величина называется энергией активации донорных примесей —А до и для ее расчета следует воспользоваться методами, которые были применены в 8 при определении ширины запрещенной зоны —Ниже мы не пойдем по этому пути, а просто покажем, что энергия акти-фВации донорных примесей не может быть большой отрицательной величиной. Для этого прибегнем к следующим рассуждениям. Энергия ионизации атомов элементов, применяющихся в качестве донорных примесей, находятся в пределах 4—10 эв (см. табл. 1). При отрыве электрона, находящегося на первой возбужденной орбите, необходимо затратить энергию, в 2—4 раза меньшую, чем энергия ионизации, т. е. 1—5 эв. Такой результат мы получаем на основании формулы (44), при выводе которой предполагалось, что ионизируемые атомы находятся в среде с диэлектрической проницаемостью е, равной 1. В случае, когда е> 1, энергия ионизации уменьшается в е раз. Значения диэлектрической проницаемости для кремния и германия равны соответственно 11 и 16. Отсюда следует, что энергия ионизации донорных примесей в кристаллах этих элементов должна находиться в пределах от — эв =0,06 до — эв = 0,45 . С другой [c.126]

    Поскольку Айдо,, много меньше А д, то концентрация свободных электронов в полупроводнике с донорной примесью может быть много больше, чем в собственном полупроводнике. При выполнении этого условия можно считать, что концентрации [c.127]

    Таким образом, с точки зрения воздействия на величину работы выхода фэ, растворенные в воде кислоты и окислители подобны акцепторным примесям в полупроводниках, а основания и восстановители выполняют роль донорных примесей. При этом раствор нейтральных солей оказывается аналогичным скомпенсированному полупроводнику. Заметим, однако, что такая аналогия справедлива только при сравнении термодинамических свойств полупроводников и водных растворов. Влияние же примесей на электропроводность этих веществ совершенно различно. Действительно, в отличие от полупроводников, все ионизованные примеси в водных растворах являются носителями заряда. Поэтому концентрация носителей противоположного знака в таких растворах одинакова и, как правило, увеличивается при введении любой из ионизирующихся примесей. Так, если удельная проводимость скомпенсированного полупроводника не может быть больше собственной, то удельная проводимость раствора КС1 или другой [c.189]


Смотреть страницы где упоминается термин Полупроводники донорная: [c.90]    [c.226]    [c.439]    [c.147]    [c.149]    [c.456]    [c.242]    [c.301]   
Гетерогенный катализ (1969) -- [ c.241 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники

донорные



© 2025 chem21.info Реклама на сайте